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Recent work in the area of software engineering has focused on the development of

sophisticated interactive environments to support the development and maintenance

of software systems. In such environments, software development usually proceeds in

cycles of program modification followed by testing and debugging. The testing and

debugging of modified programs is a major factor contributing to the high cost of

maintaining evolving software systems. To reduce this cost, program changes must

be made and tested in an efficient manner. This dissertation describes a systematic

approach for reducing the cost of regression testing and fault localization through

the use of incremental data flow analysis. Incremental data flow analysis is used to

identify the portion of a program affected by a change so that testing effort may be

focused accordingly. The analysis allows the partitioning of existing test cases into

relevant, nonrelevant, and invalid classes. This greatly reduces the effort associated

with validating a program following modification. New algorithms for definition-use

dependency analysis and data flow anomaly detection which is capable of handling

recursive procedures are also presented.
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CHAPTER 1

INTRODUCTION

Software systems are usually subjected to a series of modifications during both the

development and maintenance phases of their life cycles. Modifications may be made

to a software system for a variety of reasons. These include correction of errors not

discovered during the original validation of the software, changes in the requirements

of the system, and enhancements to make the system more efficient.

The cost of such maintenance activities is estimated to be as high as 30 to 80

percent of the total cost of a system [52]. Moreover, Lientz and Swanson [35], in a

survey of 487 data processing organizations, reported that about half of an application

staff’s time is spent on maintenance, with approximately one-half staff-year of effort

being allocated to maintain an average system of 23,000 source lines of code annually.

The high cost of program modifications is a real problem facing software developers,

yet there has been very little research that directly addresses this problem. It is also

common knowledge that undesirable side effects are easily introduced into a software

system that is undergoing modification. For example, in a study of changes made

to a large Centrex-type telephone switching system, Collofello and Buck found that

as many as 72 percent of the discovered defects were associated with side effects in

unchanged portions of the system [13].

The task of modifying a program to correct a detected fault may be decomposed

into three subtasks: fault localization
,
fault repair

,
and regression testing. Fault lo-

calization is the process of identifying the cause of the anomalous behavior and is

considered to be the most difficult and time consuming of the three [50]. Fault repair

1



www.manaraa.com

2

involves modifying the program to eliminate the cause of the discrepancy. Regres-

sion testing is the selective testing carried out to verify that the modification has

not caused adverse side effects and that the fault has been corrected [27]. Typically,

regression testing is done many times throughout the life span of a product. For

products which have many releases, the total effort in performing regression testing

may exceed that of testing during initial development. Therefore, it is essential to

have an efficient strategy for regression testing. Effective regression testing involves

confining the testing to the affected parts of the program by selecting only the rele-

vant test cases from the existing test suite. This dissertation introduces a systematic

approach based on incremental data flow analysis for carrying out each of these tasks.

Data flow analysis has long been a basic tool in building optimizing compilers.

It has also been used in detecting program anomalies [40], and in software testing

[33, 41]. With the advent of incremental data flow analysis techniques [47, 49, 57],

additional applications to software engineering have become possible [23, 29]. This

dissertation introduces one of them: a systematic approach to increase the efficiency

of regression testing and fault localization. Incremental data flow analysis is used

to track the changes in definition-use paths (see Chapter 2 below) as a program is

modified. Modified and newly introduced definition-use paths determine the portion

of the program that needs to be retested. Where needed, new test cases that test the

affected part of the program can be synthesized. Modified and deleted definition-use

chains are used to determine which existing test cases should be rerun. Retesting of

the whole program can then be avoided by rerunning only these test cases and new

ones to test the modified and/or added definition-use chains, saving time and effort.

When an error is detected by a test case, the definition-use paths exercised by it and

not exercised by any other test case are used to help in locating the fault. If the
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number of these definition-use paths is large, and the user is not able to determine

the exact location, additional test cases can be run to further localize the fault.

The remainder of the dissertation is organized as follows: Chapter 2 provides

a brief overview of data flow analysis techniques and the data flow testing criteria

used in the following chapters. Chapter 3 introduces a new approach to increase

the efficiency of regression testing and fault localization using incremental data flow

analysis. Chapter 4 shows how the new approach is applied by way of an example.

Chapter 5 discusses the time and space complexity of the new approach. Chapter 6

outlines the implementation of an interactive environment designed to demonstrate

the proposed approach. Chapter 7 introduces a new algorithm for interprocedural

definition-use dependency analysis. The object of this algorithm is to extend our

approach to handle programs with more than one procedure in it. The algorithm

introduced in this chapter can handle programs with recursive procedures but is not

incremental. To be useful for our approach an incremental version of the algorithm

has to be devised. This will be the subject of our future research. Chapter 8 contains

a new approach to data flow anomaly detection. Existing data flow anomaly detection

algorithms do not handle programs with recursive procedures. The new algorithm

does. Conclusions and further study are discussed in Chapter 9.
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CHAPTER 2

BACKGROUND

This section summarizes some relevant background information on data flow anal-

ysis and fault localization.

2.1 Data Flow Analysis

During program execution, there are three basic actions associated with individual

variables: def, when a value is assigned to a variable; re/, when a variable’s value

is used; and undef’ when a variable becomes unavailable (e.g., a local variable on

exit from a subprogram). The basic principle of data flow analysis is to study the

sequence of such actions on variables along program paths. The original motivation

for such work was to improve the efficiency of optimizing compilers. However, this

emphasis shifted somewhat with the realization that anomalous sequences of actions

(e.g., undef followed by ref, def followed by undef, and def followed by def) could be

detected by statically scanning the program source code. While data flow anomalies

do not necessarily imply a program error, they are clearly worth noting. Early work

in this area, particularly that of Fosdick and Osterweil [20], resulted in the DAVE

software verification tool [40]. Shortly afterwards, Huang showed that the presence of

data flow anomalies could be detected through program instrumentation and dynamic

execution [26]. More recently, data flow analysis has been used to formulate strategies

for the construction and evaluation of test data [33, 41].

4
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2.1.1 Program Control Flow Graphs

In data flow analysis, a directed graph G = (N, E,n0 )
called a control flow graph

is used to represent the program under consideration where N is a set of nodes, E

is a set of edges, and n0 is the initial node in the graph. Each node in the graph

represents a basic block
,
defined as a maximal sequence of statements where, if any

statement in the sequence is executed, all statements in the sequence are executed.

Each edge in the graph represents a possible transfer of control between two nodes.

A path is a finite sequence of nodes connected by edges. A complete path is a path

whose first node is an entry node of the program and whose last node is an exit node.

2.1.2 The Data Flow Analysis Problem

While there are major differences among the algorithms developed for data flow

analysis, there is also much similarity. There have been several survey works, notably

Kennedy [30] and Ryder and Pauli [48], that compare various features of the different

data flow algorithms. Each of the algorithms attempts to solve essentially the same

problem: Given a control flow graph, the object is to discover the nature of the data

flow, i.e. which definitions of program quantities can affect which uses, within the

program.

2.1.3 Data Flow Analysis Techniques

The gathering of information to solve data flow problems is accomplished in two

phases. The program is subdivided into basic blocks, possible block to block transfers

are noted, and program loops are found. This phase is known as control flow analysis.

Next the information about how uses and definitions relate to one another is gleaned

in the global data flow analysis phase.
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Classical data flow analysis techniques can be loosely characterized by the follow-

ing paradigm:

1. Partition the program into small sections of code. These sections are normally

single entry single exit sections of assignment statements called basic blocks.

2. Collect local information about each basic block. This information consists of

which variables are defined (i.e. given values) and which variables are used (be.

referenced) in the block.

3. Build a graph of the program. The nodes of the graph typically correspond

to the basic blocks. The edges represent possible transfer between the nodes

during execution.

4. Find an ordering for the nodes in the flow graph. This step is where most

methods differ from one another.

In many algorithms this and the next steps are combined. The ordering used

in this step is found by doing reductions on the flow graph. As sets of nodes

are reduced, the information is propagated for that local area. The common

feature of these algorithms is that a single ordering is found. Information in

the form of single bit vector is propagated using this ordering.

5. Propagate the local information for each node to the other nodes in the flow

graph. This propagation step is done for all variables in parallel. The propaga-

tion proceeds using the ordering established in the previous step. The propa-

gation continues until the information stops changing. Several techniques that

establish the ordering of the nodes in the graph have the property that after a

fixed number of passes the information will have reached a fixed point.
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2.1.4 Data Flow Testing Criteria

Rapps and Weyuker [41] divide the ref category of possible actions on variables

into two classes: c-use—when the variable reference occurs in a computation and

p-use—when the variable reference occurs in a predicate expression. The following

examples illustrate the concept:

1. Let exp be an arithmetic expression containing the variables Xi,...,xn ,
then

the assignment statement y := exp contains c-uses of Xi, ..., xn followed by a

definition of y.

2. The input statement read(xi, ...,xn )
contains definitions of xj, ...,xn .

3. The output statement write(xi, ..., xn )
contains c-uses of xi,...,xn .

4. Let exp be a Boolean expression containing the variables Xi,...,xn ,
then the

conditional statement if exp then ... contains p-uses of xi, ...,xn .

Let x be a variable occurring in a program. A path (n0 , . .
. ,
nt ), t > 1, containing

no definitions of x in the nodes n\, ..., n t_i is called a definition-clear path with respect

to x from node no to node n t . A node n has a global definition of a variable x if it

has a definition of x and there is a definition-clear path from node n to some other

node containing a c-use, or edge containing a p-use, of x.

Rapps and Weyuker [41] define a family of criteria for test case selection based

on data flow analysis. These criteria are all-nodes
,

all-edges, all-p-uses, all-defs,

all-c-uses, all-c-uses/some-p-uses, all-p-uses/some-c-uses, all-uses, all-du-paths, and

all-paths. Precisely, letting P be a set of complete paths through a program flow

graph G, then

1. P satisfies the all-nodes criterion if every node of G is included in P.
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2. P satisfies the all-edges criterion if every edge of G is included in P.

3. P satisfies the all-defs criterion if for every node i of G and for every variable

x which has a global definition in i, P includes a def-clear path with respect to

x from i to some node or edge where x is used. That is every global definition

must be used at least once.

4. P satisfies all-p-uses criterion if for every node i and every variable, x, in def(i),

P includes a def-clear path with respect to x from i to all edges where x is used.

5. P satisfies the all-c-uses/some-p-uses criterion if for every node i and every

variable x in def(i), P includes some def-clear path with respect to x from i

to every node where x is used; if no such node exists, then P must include a

def-clear path with respect to x from i to some edge where x is used.

6. All-p-uses/some-c-uses criterion is defined in a similar manner.

7. P satisfies the all-uses criterion if for every node i and every variable x which

has a global definition in i, P includes def-clear paths with respect to x from i

to each node or edge where x is used. Thus, P must include a path from every

global definition to each of its uses.

8. P satisfies the all-du-paths criterion if for every node i and every variable x

which has a global definition in i, P includes every du-path with respect to x.

Thus, if there are multiple du-paths from a global definition to a given use, they

must all be included in paths of P.

9. P satisfies the all-complete-paths criterion if P includes every complete path of

G. Note that programs which are represented by graphs containing loops may

contain an infinite number of complete paths.
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The criteria all-nodes (statement coverage) and all-edges (branch coverage) are

often used in program testing, despite the fact that it is well known that they are

weak criteria. Certainly they represent necessary conditions, for if some portion of the

program has never been executed, one would not in general feel confident about its

behavior. A similar intuition motivated the definition of the all-defs criterion, since

even if every statement and branch are executed, if the result of some computation

has never been used, one would have little evidence that the intended computation

has been performed.

The criteria all-p-uses, all-uses
,
and all-du-paths have been shown to be more

powerful than branch testing in the sense that any set of paths that satisfy any of

these criteria will also satisfy the branch testing criterion [41].

The family of data flow-based testing criteria is partially ordered by strict inclu-

sion as shown in Figure 2.1 [41]. Criterion C\ includes criterion C2 if for every data

flow graph G, any set of complete paths of G that satisfies C\ also satisfies C 2 . In

Figure 2.1 we write C\ —* Ci when criterion C\ includes C?. Clarke et al. [12] have

shown the relationship of the criteria defined by Laski and Korel [33] and Ntafos [39]

to the data flow criteria. In addition, Frankl and Weyuker have extended data flow

testing criteria to feasible testing criteria by requiring the test data to exercise only

those paths which are executable [22].

When selecting a testing criterion, there is, of course, a tradeoff involved. The

stronger the selected criterion, the more closely the program is scrutinized in an

attempt to locate program faults. A weaker criterion, on the other hand, will usually

be satisfied with fewer test cases. The decision as to which criterion to use depends

on several factors, including the size of the program, time and cost restrictions, and

the consequence of errors.
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ALL-COMPLETE-PATHS

ALL-DU-PATHS

ALL-USES

ALL-C-USES/SOME-P-USES ALL-P-USES/SOME-C-USES

ALL-EDGES

ALL-NODES

Figure 2.1. Partial order of the testing criteria
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2.2 Regression Testing

Software maintenance involves changing programs as a result of errors, or a change

in the user requirements. It is common knowledge that many of the errors appear-

ing in production software have not arisen from the original implementation, but

have accidently been incorporated during the post-release modifications, producing

unintended side effects. In order to combat such problems, the original implemen-

tation of software products should include thorough sets of test cases to exercise all

the functional aspects of the programs, together with the capability of retaining and

extending these test cases during the software life cycle. Regression testing is the

name given to the process of retesting software after modification. A major task in

regression testing is to determine which existing test cases should be rerun. Current

regression testing tools do not, however, provide any mechanisms for automatically

determining which subset of the stored test cases should be rerun after code modi-

fications have been made. Thus, to ensure the verification of the modified segments

of code, the user is advised simply to rerun the entire set of existing test cases, or

intuitively/randomly select test cases which will exercise the main program features

to provide a degree of confidence in the correct operation of the modified software.

This approach, of course, can be very wasteful of both time and resources and may

frequently be totally impractical for software with a large set of existing test cases.

Leung [34] associate a bit vector with each node in the control graph. If a test

case i traversed a node, then the i
th

bit of the node’s bit vector is set to 1. When a

node is modified, deleted, or split, the corresponding bit vector determines the test

cases that should be rerun.

Another approach, based on data flow testing and incremental data flow analysis,

was proposed by Harrold and Sofia [23]. In this approach, the control flow graph is



www.manaraa.com

12

extended to support the needed history information. For each definition in a node in

the graph, the nodes and edges that use the definition are attached. In addition, a

list containing the nodes where each variable is defined and a list of the definition-use

chains that are used to meet the adequacy criterion are maintained. After a program

change, the deleted definition-use chains are used to determine the test cases which

should be rerun. This approach is similar to Leung’s method when the all-nodes

coverage criterion is used. We extend Harrold and Sofia’s approach to help the user

in generating new test cases and localizing program errors.

2.3 Fault Localization

Software development, as currently practiced, is a complex and error prone pro-

cess. As a result, a significant amount of time is spent in debugging. The debugging

process itself consists of two activities: fault localization and fault repair. In most

situations, much of the debugging effort is associated with fault localization [50].

The fact that software testing and debugging are related is evident and has been

formally established [1]. Most existing debugging methodologies that use testing

information, however, exploit only information based on the test case that revealed

the error and ignore past test cases that executed correctly [2, 31, 32]. This is

because of the lack of an environment which maintains the correspondence between

the previous test cases and the text of the modified programs. By storing the test

cases along with the definition-use chains covered by them and by using incremental

data flow analysis to track down the changes in the definition-use chains during

program modification, this correspondence can be maintained. When a test case

reveals an error, its execution path may be used to guide the search for the fault

location. The execution paths of previous test cases may also be used to narrow the

scope of the search.
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The idea of using the knowledge of existing test cases in fault localization was

proposed by Collofello and Cousins [14]. Their approach is based on the analysis of

decision-to-decision-path (DD-path) executions. A DD-path is a section of straight-

line code between predicates in a program—or, more simply, a basic block. The

approach suggests that a set of test cases that executes correctly can be utilized to

locate DD-paths that contain faults in an incorrect execution path. To support this,

execution path information consisting of the DD-paths traversed by each test case is

recorded. Various heuristics are applied to compare the execution path of a test case

that detects an error with those that do not, in an attempt to locate the DD-paths

on the incorrect path associated with the fault. One such heuristic is based on the

hypothesis that a DD-path traversed by an error-revealing test case which has not

been traversed by successfully run test cases in the database is likely to be associated

with the fault. Ten such heuristics are given by Collofello and Cousins [14], and their

relative effectiveness in fault localization have been demonstrated using statistical

analysis.

Chapter 3 introduces a systematic approach based on incremental data flow anal-

ysis for locating faults once their presence is detected during testing. In this approach

the definition-use chains that are covered only by the test case which revealed the

error are used to help locate the fault.
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CHAPTER 3

THE PROPOSED APPROACH

Our approach uses incremental data flow analysis to mitigate the two main prob-

lems of program modification and re-validation. One is the fault localization problem

and the other is the test suite maintenance problem. In the fault localization problem,

we are given a test case that detects a discrepancy between the actual and intended

output of a program and we wish to determine which program statements are asso-

ciated with that discrepancy. The test suite maintenance problem is concerned with

developing new test cases as well as partitioning existing test cases into three sets:

(1) the set whose members are relevant to the modification—these cases will exercise

paths along which changes have been made, if rerun; (2) the set whose members

are not relevant to the modification—these cases will exercise paths along which no

changes have been made, if rerun; and (3) the set of test cases which are no longer

valid, due to changes in program functionality, test case format, etc. These sets are

called retestable, reusable, and obsolete test cases respectively [34].

Given a solution to the test suite update problem, regression testing is performed

as follows: (1) remove the invalid test cases from the original set of test cases; (2) test

the modified program using the test cases which are relevant to the modification; and

(3) test the modified program using the new set of test cases. If errors are detected,

locate and repair the faults. Repeat the process until no errors are detected.

14
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3.1 The Information Structures

Our approach is closely tied to the use of two basic information structures. The

first—which we will refer to as “Table 1”—contains the set of definition-use chains

in a program that must be covered by test cases in order to achieve all-uses coverage.

A definition-use chain is represented by a tuple of three elements: a variable name, a

number corresponding to a basic block in which the variable is defined, and a number

corresponding to a basic block in which the variable is used. Each tuple describes a

definition-clear path with respect to the named variable from the definition block to

the use block. To make the presentation simpler, each p-use is represented by a c-use

in the node that is a target for the edge associated with the p-use.

The second structure—which we will refer to as “Table 2”—contains the following

information for each test case:

1. Input value(s), observed output value(s), and a flag indicating whether or not

the observed output is correct. (The latter is represented by the field “OK” in

Table 4.2.)

2. The definition-use chains covered by each test case.

3.2 The Process

Given a program, the suite of test cases used to validate it, and a specified mod-

ification,

1. If Tables 1 and 2 do not already exist, generate them as follows:

(a) Generate the set of definition-use chains that should be covered to achieve

all-uses coverage. This can be done by applying a data flow analysis algo-

rithm such as that given by Allen and Cocke in [4] to determine the set
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of variable definitions that may reach each node in the control flow graph.

The set of definitions reaching a particular node, together with the set

of variables used in that node or on the edges leading to that node, can

be used to determine the set of chains from other nodes to it. Store the

chains in Table l
1

.

(b) Rerun each test case. Store the corresponding definition-use chains covered

by it in Table 2.

(c) Delete the definition-use chains covered from those listed in Table 1. Ta-

ble 1 now lists only those chains which would need to be covered in order to

achieve all-uses coverage. Note that complete coverage is not required for

the proposed approach and may not even be possible due to the existence

of infeasible paths.

2. As the program is being modified, an incremental data flow analysis algorithm

[47, 57] is used to maintain the set of reaching definitions to each node in the

control flow graph. The deleted, affected, and newly created definition-use

chains in the program can be determined from the changes in the reaching

definitions. Note that this task can be almost impossible without the use of

incremental data flow analysis. A chain
(
v

, «i, n2 )
is deleted if (a) all definitions

of v have been removed from nj
;
(b) all uses of v have been removed from n2 ;

or (c) a definition of v has been inserted such that there does not exist any

definition-clear path with respect to v from ni to n 2 . A chain (u,ni,n 2 )
is

affected if the value of v on exit from node could be affected by a change in

the node2
. A chain (u,«i,n2 )

is created if (a) a new definition of v has been

Tn the remainder of this dissertation, the expression “a variable used in a node” will refer to a
c-use in that node or a p-use on the edges leading to that node.

2This could come about in three ways: (a) a new assignment statement is created for v; (b) the
expression part of an assignment to v is changed; or (c) a variable y is defined at statement Sx and
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made in n\ and v is used in n2 ;
(b) a new use of v has been made in and

v is defined in «i; or (c) v is defined in nj and used in n2 respectively, and a

definition-clear path with respect to v from n\ to n 2 has been created due to

program changes.

3. Remove the deleted and add the new and affected definition-use chains to Ta-

ble 1. These are chains which must be covered in order to achieve all-uses

coverage of the modified program.

4. Test cases in Table 2 that previously covered an affected or deleted definition-

use chain are classified as relevant to the program modification and are rerun.

Update Tables 1 and 2 accordingly.

Note that if a test case should fail during this process, the user must determine

if an error has been revealed or if the test case is no longer valid due to a change

in program specification. If it is found to be invalid, it should either be modified or

deleted from the test suite.

If it is determined that the level of coverage provided by the test suite is no longer

adequate, information in Tables 1 and 2 may be of help in developing new test cases.

Since Table 1 contains the definition-use chains which have not yet been covered, it

may be desirable to identify new test cases which will cover these chains, when such

test cases exist. The potentially difficult task of identifying input data which will

cover a given chain may be simplified by searching Table 2 for a test case with an

execution path that includes a subpath from the start node to the definition node

of the chain under consideration. In other words, if the chain under consideration is

(u,ni,n2 ), Table 2 is searched for a pattern of the form (v,ni,*) where * matches

later used to define v at statement S2 where y is not redefined between Si and S2 and the expression
part of Si has been modified, or y has been redefined between Si and S2 .
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any node number. If found, the user may take the input values for that test case as

a starting point in his search for input values for the new one by changing one value

at a time.

When, in the process proposed, a test case is found to reveal an error, a simple

heuristic would suggest that the fault is likely to be associated with a definition-use

chain exercised solely by this test case. These chains can easily be determined by

intersecting those exercised by the revealing test case with those listed in Table 1. If

the number of such chains is large, the user may wish to proceed with more testing

before employing the strategy. Clearly, as the number of chains covered by successful

test cases increases, the number of chains exercised by the revealing test case which

have not already been covered will tend to decrease.

3.3 Conditions for Best Results

The proposed approach is particularly useful when the following conditions hold:

1. The program being modified was previously validated using a “good” set of test

cases, where goodness is related to the coverage measure (e.g., definition-use

chains) employed in the analysis. If the coverage provided by an existing test

suite is found to be unsatisfactory with respect to the chosen criterion, the

programmer may design additional test cases to improve the level of coverage.

2. The program is being modified to correct a revealed (program) error. Since

program requirements remain unchanged in this situation, all of the test cases

should remain valid after the modification is made.

3. The program being modified is a single, stand-alone procedure, with no calls

to subroutines with side effects. An incremental inter-procedural definition-use

dependency analysis algorithm is needed to allow the proposed approach to
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handle multi-procedure programs. Chapter 7 introduces a new algorithm that

could be helpful in that endeaver.
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CHAPTER 4

APPLICATIONS OF THE PROPOSED APPROACH

We illustrate the potential usefulness of our approach by applying it to the pro-

gram shown in Figure 4.1, which is specified to compute y/p, for 0 < p < 1 to

accuracy e; where 0 < e < 1. Figure 4.2 shows the corresponding control flow graph.

The program contains a fault; the statements of Node 5 in Figure 4.2 should be inter-

changed. This example will be used later to illustrate the usefulness of our approach

in discovering and locating program faults.

Now, assume we have a test suite consisting of four cases, Tl, T2, T3, and T4.

The values for the input variables p and e are given in Table 4.2 for each. We begin

by employing standard data flow analysis to determine the definition-use chains that

must be covered to achieve all-uses coverage. These chains are shown in Table 4.1.

The results of running the four test cases are shown in Table 4.2.

Table 4.1. The definition-use chains required to achieve a

All definition -use chains in the program

(c, 1, 2), (c, 1, 3), (c, 1, 4), (c, 1, 5),

(c, 1, 7), (c, 4, 3), (c, 4, 4), (c, 4, 5),

(c, 5, 3), (c, 5, 4
), (

c
> 5, 5), (d, 1, 3),

(d, 1, 6), (d, 3, 3), (d, 3, 5), (d, 3, 6),

(e, 1, 3), (e, 1, 6), (t, 3, 4), (t, 3, 5),

(x, 1, 3), (x, 1, 5), (x, 1, 6), (x, 5, 3),

(
x

> 5, 5), (x, 5, 6)

1-uses coverage.

20
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read(p, e) ;

d := 1.0;

x := 0.0;

c := 2 * p;

if c < 2 then

begin

while d > e do

begin

d := d / 2.0;

t :=c- (2*x+d);
if t < 0 then

c := 2 * c

else

begin

x := x + d;

c := 2 * (c - (2 * x + d))

end;

end;

write(x)

;

end

else write(-l)

;

Figure 4.1. An example program.
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Figure 4.2. The control flow graph.
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Table 4.2. The contents of Table 2 after running Tl, T2, T3, and T4
Test

case

Inputs Output OK Definition-use chains covered

P e

Tl 2.0 .05 -1.0 yes (c, 1, 7)

T2 0.5 1.0 0.0 yes (c, 1, 2), (d, 1, 6), (e, 1, 6),

(x, 1, 6)

T3 .16 .3 .25 yes (c, 1, 2), (c, 1, 3), (c, 1, 4),

(c, 4, 3), (c, 4, 5), (d, 1, 3),

(d, 3, 3), (d, 3, 5), (d, 3, 6),

(e, 1, 3), (t, 3, 4), (t, 3, 5),

(x, 1, 3), (x, 1, 5), (x, 5, 6)

T4 .36 .3 0.5 yes (c, 1, 2), (c, 1, 3), (c, 1, 5),

(c, 5, 3), (c, 5, 4), (d, 1, 3),

(d, 3, 3), (d, 3, 5), (d, 3, 6),

(e, 1, 3), (e, 1, 6), (t, 3, 4),

(t, 3, 5), (x, 1, 3), (x, 1, 5),

(x, 5, 3), (x, 5, 6)

Table 4.3. The untested chains after running Tl, T2, T3, and T4.

The untested definition-use chains

(c, 5, 5), (c, 4, 4), (x, 5, 5)

Table 4.3 indicates the contents of Table 1 after running the test cases Tl, T2,

T3, and T4, which are the definition-use chains that are not covered yet. Since Table

1 is not empty, new test cases should to be selected to cover these chains.

4.1 Application 1: Generating New Test Cases

The aim in generating new test cases here is to exercise the definition-use chains

(c, 4, 4), (c, 5, 5), and (x, 5, 5). To cover (c, 4, 4), we need a test case with an

execution path which contains the sub-path (4, 2, 3, 4), so that variable c may be

defined and then used later in Node 4. As a first step, we look for an existing test

case that has an execution path which contains a definition of the variable c in Node
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Table 4.4. The information that

Test

case

Inputs Output OK Definition-use chains covered

P e

T5 .04 .3 0.0 yes (c, 1, 2), (d, 1, 3), (e, 1, 3),

(x, 1, 6), (x, 1, 3), (c, 1, 3),

(t, 3, 4), (c, 1, 4), (d, 3, 3),

(c, 4, 4), (d, 3, 6), (e, 1, 6)

4. This is done by searching Table 2 for a pattern of the form (c, 4, *). That test case

is T3, which has a definition-use chain (c, 4, 3) (or (c, 4, 5)). Now, we change the

values of p and e to force the variable c to be used in Node 4. After a few attempts,

we find that the values 0.04 and 0.3 for p and e, respectively, will work. We call

the new test case T5, and run it. Table 4.4 shows the information that should be

added to Table 2 after running T5. Table 1, which contains the chains that need to

be covered, now contains only (c, 5, 5) and (x, 5, 5). To cover these chains, we need

a test case that executes the sub-path (5, 2, 3, 5). Note that an existing test case

with the variable c defined in Node 5 (or the variable x defined in Node 5) is T4. By

changing its p value to 0.81 and running the new case, an error is revealed. We call

the new test case T6, and add it to the test case set.

4.2 Application 2: Fault Localization

As discussed in Section 2.3, fault localization can be a very time consuming process

[50]. In the previous section, we outlined a strategy for fault localization based on

incremental data flow analysis. In this section, we illustrate the strategy using the

example program.

Since test case T6 revealed an error, our heuristic suggests that the definition-use

chains covered solely by T6 are good candidates for initial analysis. These chains are

(c, 5, 5) and (x, 5, 5). The statements associated directly with these chains are those
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contained in Node 5 of the control flow graph (see Figure 4.2). Recall that the error

introduced in the program was interchanging the two assignment statements in that

node.

While this example illustrates our basic strategy for fault localization, more study

is clearly needed to assess its usefulness in application. We believe, however, that

it will be more useful than a similar approach shown to have some promise [14]

which is based on decision-to-decision-path (DD-path) analysis. Applying DD-path

analysis in the strategy illustrated above will produce suspect basic blocks, whereas

applying the proposed approach produces both suspect basic blocks and suspect data

flows between those basic blocks. The intuition is that an error has been revealed

which is associated with a definition-use chain uniquely covered by this test case. This

additional information should provide users with more detailed, if still circumstantial,

evidence concerning the error.

Another factor affecting the usefulness of the strategy is the level of coverage

achieved before the error is revealed. As this level increases, the number of chains

covered solely by the revealing test case will tend to decrease, thus reducing the

number of chains under suspicion.

The integration of testing and debugging activities through the application of

incremental data flow analysis techniques appears to be one of the most interesting

approaches in this area. More work is obviously needed to assess its usefulness and

limitations.

4J Application 3: Reducing the Number of Test Cases to be Re-run

Well managed software development houses usually have sets of test cases that

can be used to validate each new version of a system. However, current regression

testing tools do not provide efficient mechanisms for automatically determining the
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subset of cases which should be rerun after program modifications. Since rerunning

all test cases is often impractical, programmers are typically left to rerun randomly

chosen subsets of cases which are either related to the function being modified, or

which exercise modules or procedures believed to be affected by the modification.

Even if there is time to run all test cases, it would be desirable to know which are

most likely to reveal errors so that they may be run first.

The proposed approach provides a natural mechanism for automatically identi-

fying test cases which should be rerun following program modifications. They are

the cases associated with definition-use chains which are deleted or affected during

program modification.

To illustrate the concept, consider the interchanging of the two statements in

Node 5 of the example program in order to correct the error revealed by test case T6.

Interchanging the statements has no effect on the final value of x, but variable c may

have a different value on exit from the node. This is because the statement which

assigns a value for c is data dependent on the statement which define x. Therefore, the

definition-use chains (c, 5, 3), (c, 5, 4), and (c, 5, 5) are affected. This determination

is made possible by performing the data flow analysis incrementally [47, 57]. The set

of affected definition-use chains determines the test cases that should be rerun. By

searching Table 2 (Tables 4.2 and 4.4) for test cases that were used to cover these

chains, we find that T3 and T4 should be rerun. Obviously, test case T6, which

revealed the error, should be rerun also. After rerunning these three test cases, all-

uses coverage is satisfied. For our small program example, 3 out of 6 test cases are

rerun. For programs with a large number of execution paths, most changes would

affect a small fraction of the paths, and hence a smaller percentage of the test cases
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would need to be rerun. Note that if all-nodes coverage was used this approach would

degenerate to the approach given by Leung [34].

As a final note, we point out that the proposed approach can also be helpful in

maintaining existing programs when no previously developed test cases are available.

When a program is modified to enhance performance or to add new capabilities,

testing effort should be focused on the affected portions of the program. To isolate

these affected portions, data flow analysis is carried out before modifications are made

to identify all definition-use chains. As the program is modified, new definition-use

chains that either lie wholly in the modified portion of the program or extend from

the modified to the unmodified portion, or vice versa, will be introduced and can be

identified. By developing test cases to cover these new chains, one may focus the

testing on affected portions of the program.
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CHAPTER 5

TIME AND SPACE COMPLEXITY ANALYSIS

In this section, the time and space complexities of the proposed approach are

discussed.

5.1 Time Complexity

The time complexity of each step in the proposed approach is as follows:

Incremental analysis: As a program is modified, an incremental data flow analysis

algorithm is used to determine the deleted, affected, and new definition-use

chains. The complexity of such algorithms is 0(N), where N is the number of

the basic blocks in the program [57].

Updating Table 1: For simplicity, let us assume that on average, program modifica-

tions result in changes to a fixed number of nodes, independent of the total

number of nodes, N, in the control graph of the program. 1 Thus, changes to,

or deletions of, variable definitions can occur in at most a fixed number of ba-

sic blocks. Since all variable uses occur in at most N blocks, the number of

definition-use chains that may be deleted or modified as a result of a change is

0(t>iV), where v is the number of variables used in the program.

Initially, Table 1 contains the definition-use chains that should be covered to

achieve all-uses criterion. Let the number of these chains be K. 2
Therefore, the

Actually, the average number of nodes changed per program modification probably increases

slowly with the number of nodes in the program. See, for example, [7].
2
In the worst case K = 0(N2

) [21], However, for real programs, K will be much smaller.

28
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time required to delete or add a definition-use chain to Table 1 is 0(log(/\ ))

—

assuming that the Table is sorted.
3 Since we have at most 0(N) definition-use

chains, the time required to update Table 1 is 0(N\og(K)).

Updating Table 2: Two operations are required to update Table 2: determining the

relevant test cases and inserting new test cases. Let the number of test cases

in Table 2 be T. Each test case is associated with at most K definition-use

chains. To determine which test cases are relevant to a program modification,

it is necessary to search through each test cases in Table 2 for each deleted or

modified definition-use chain. Therefore, the time complexity to determine the

relevant test cases is T * 0(N) * 0(log(A')) = 0{TN log(/l )).

When a new test case is inserted in Table 2, the definition-use chains related

to this test case must be sorted. Since there are at most O(K) such chains, the

time required to sort them is 0(K log(AT)). Assuming the maximum number

of new test cases to be inserted is C, the time complexity to update Table 2 is

0(TN\og(K) + CK\og{K)).

Based on this analysis, the time complexity of the proposed approach is

0(TN\og(K) + CK\og(K)). We are not suggesting that all-uses criterion

necessarily be satisfied, since this could involve a great deal of time and effort.

Indeed, it would be impossible in some cases due to the existence of infeasible

paths. Rather, the aim of our approach is to make the best use of already

existing test cases and a limited amount of time.

3Time 0(K log(A')) is required to sort the chains in Table 1. However, this need be done onlv
once.
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5.2 Space Complexity

It is clear that the space required for Tables 1 and 2 is O(K) and 0(TK) respec-

tively.
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CHAPTER 6

A PROTOTYPE FOR THE PROPOSED APPROACH

Developing reliable programs is a complicated and challenging activity requiring

a variety of skills. Software tools have been developed to aid in the process of pro-

gram development. The move from machine languages to assembly languages and

from assembly languages to high level languages were the first significant advances

in software tools. The next improvement came with the shift from batch mode to

interactive mode. This provided a dramatic decrease in the required time for the

usual edit-compile-execute cycle. The advent of screen oriented editors increased the

efficiency of the edit phase of this cycle. There is a widespread, although informal,

agreement that users of interactive environments tend to be more productive. In-

tegrated programming environments are collections of tools to aid in all phases of

program development.

This chapter introduces an interactive programming environment which is de-

signed to demonstrate the approach presented in the last chapters. This interactive

environment may support an individual programmer in the development of his/her

program by providing integrated tools to create, execute, debug, and revalidate pro-

grams. This interactive programming environment is composed of a syntax directed

editor, an incremental code generator, an interpreter, an incremental data flow ana-

lyzer, and an interface module that maintains a database of test cases to be used for

later debugging and regression testing. The tools in the environment are specified

in attribute grammar, and is implemented using the Cornell Synthesizer generator

31
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[42, 43, 44]. A block diagram of the prototype of this interactive programming envi-

ronment is shown in Figure 6.1.

6.1 Generating Language-Based Programming Environments

Today’s powerful stand-alone computers provide virtually free processing capac-

ities, which can perform millions of operations between every pair of consecutive

keystrokes. This processing power is currently going to waste. Language-based pro-

gramming environments offer a way to put this capacity to work. The Synthesizer

Generator (SG) is one such system for generating language-based programming en-

vironments and is used to implement our prototype [44].

Some language-based programming environments already exist, such as Magpie

[17], the Incremental Programming Environment (IPE) [37], and the Cornell Pro-

gram Synthesizer (CPS) [55]. The Cornell Programming Synthesizer was one of the

earliest programming systems to incorporate an editor with immediate error analysis

capability. In the Synthesizer Generator this capability has been expanded by incor-

porating a very general mechanism for implementing incremental computations on

abstract syntax trees.

6.2 The Synthesizer Generator

The Synthesizer Generator creates a language-specific editor from an input spec-

ification that defines a language’s abstract syntax, context-sensitive relationships,

display format, concrete input syntax, and transformation rules for restructuring ob-

jects. From this specification, the Generator creates a display editor for manipulating

objects according to these rules.

The treatment of language syntax by the generator is of particular importance.

The editor-designer’s specification of the language’s syntax addresses not only context-

free syntax but also such context-sensitive conditions as type correctness. As a user
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Figure 6.1. The block diagram of the prototype.
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creates and modifies objects, the generated editor immediately checks for variations

of context conditions that have been specified.

Context conditions are expressed by introducing certain attributes whose at-

tribute equations indicate whether or not a constraint is satisfied. The manner in

which objects are annotated with information about variation of context conditions

is expressed by the editor’s unparsing specification, which determines how objects are

displayed on the screen. Attributes used in the unparsing specification cause the dis-

play to be annotated with values of attribute instances. In particular, the attributes

that indicate satisfaction or violation of context-dependent constraints can be used

to annotate the display to indicate the presence or absence of errors. If an editing

operation modifies an object in such a way that formerly satisfied constraints are now

violated (alternatively, formerly violated constraints are now satisfied), the attributes

that indicate satisfaction of constraints will receive new values. The changed image

of these attributes on the screen provides the user with feedback about new errors

introduced and old errors corrected.

Specifications of all the tools in our prototype are written in the Synthesizer

Generator Specification Language (SSL), which is built around the concepts of an

attribute grammar and a type definition facility.

The Synthesizer Generator is written in C and runs under Berkeley UNIX. Editors

can be generated for X Window and for Sun View, as well as for video display

terminals. The prototype discribed here supports all three user interfaces.

6.3 The Structured Editor of the Prototype

The syntax-directed editor is used to simplify the user interface and to insure that

program modifications are syntactically correct. The editor is generated using the

Synthesizer Generator and has the following features:
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1. It enforces the view that a program is a hierarchical composition of computa-

tional structures. Programs are composed of templates
,
which provide prede-

fined, formatted patterns for each of the constructs in the language. Programs

are created top-down by inserting new templates at placeholders in the skeleton

of previously entered templates.

2. During editing, the current selection
(
i.e . insertion point), can be moved from

one template to another. The selection is indicated on the screen by highlighting

the selected region.

3. The top line of the screen has a highlighted title bar displaying the name of

the buffer. The rest of the screen is divided into three regions: the command

line
,
the help pane

,
and the object pane. The command line, just below the

title bar, is where commands are echoed and also where the system massages

are displayed. The help pane, which takes the last few lines at the bottom,

provides information about what constituent is currently selected. The object

pane, displaying the buffer’s program fragment, covers the remaining of the

screen.

4. Templates are inserted into the program by special commands, and the sys-

tem checks whether the insertion is legal. A menu of the applicable insertion

commands is always shown in the help pane at the bottom of the screen.

5. Transformation operations in the editor provide a mechanism for making con-

trolled changes in a single step. Construct-to-construct transformation opera-

tions emphasize the abstract computational meaning of program units.
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6. The editor is not just a structure editor; it also supports character and line-

oriented operations to insert and delete text. Text editing is not initiated until

the user types or erases a character.

6.3.1 The Attribute-Grammar Model of Editing

The editor is based on the concept of an attribute grammar
,
which provides a pow-

erful mechanism for displaying how widely separated parts of a program’s abstract-

syntax tree are constrained in the context provided by the rest of the tree. An

attribute grammar is a context-free grammar extended by attaching attributes to the

nonterminal symbols of the grammar and by supplying attribute equations to define

attribute values. In every production p : X0 —> X\ • • • Xk, each Xi denotes an occur-

rence of a grammar symbol, and associated with each nonterminal occurrence is a set

of attribute occurrences corresponding to the nonterminal’s attributes.

The attributes of a nonterminal are divided into two disjoint classes: synthesized

attributes and inherited attributes. Each attribute equation defines a value for a

synthesized attribute occurrence of the left-hand-side nonterminal or an inherited

attribute of a right-hand-side nonterminal.

A derivation-tree node that is an instance of symbol X has an associated set

of attribute instances corresponding to the attributes of X. An attributed tree is a

derivation tree together with an assignment of either a value or the special token

null to each attribute instance of the tree. To analyze a program according to its

attribute-grammar specification, first construct its derivation tree; then evaluate the

attribute instances using the appropriate equations. The latter process is termed

attribute evaluation.
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Functional dependencies among attribute occurrences in a production p (or at-

tribute instances of a tree T) can be represented by a directed graph, called a depen-

dence graph
,
denoted by D(p) (respectively, D(T)).

6.3.2 Specification of the Editor

The editor specification consists of a collection of declarations. These declarations

can be decomposed into: abstract-syntax declarations which define the language’s

underlying structure; attribute declarations and attribute equations which specify

the context-sensitive constraints to be enforced; and unparsing declarations which

express how programs are formatted on the display screen.

6.3.2. 1 The Abstract-Syntax Specification of the Editor

The core of the editor’s specification is the definition of the language’s abstract-

syntax, given as a set of grammar rules. The abstract syntax specification consists

of a collection of SSL productions of the form xo : op(x\Xi • • x;t); where op is an

operator name and each x,- is a nonterminal of the grammar or the name of a phylum.

The phylum associated with a given nonterminal is the set of derivation trees that can

be derived from it. These derivation trees are known as terms. With the exception of

the operators, whose purpose is to identify the production instances in a derivation

tree, the SSL grammar rule acts exactly as the context-free grammar production

Xo —* X\X2 * * * Xfc.

A term is denoted by an expression in which a k-ary operator is applied to k

constants of the appropriate phyla; for terms of nullary operators, the parentheses

may be omitted. The first operator declared for each phylum, such as the operator

Prog of the phylum program, see below, is called the completing operator and plays a

special role in the editor specification. The completing operator is used to construct
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a default representative for the phylum called the completing term. The completing

term is created by applying the completing operator to the completing terms of its

argument phyla.

The abstract-syntax rule of a list phylum must have exactly two operators, one

being a nullary operator and the other a binary operator that is right recursive.

For example, phylum decList, see below, is declared to be a list phylum and has

operators of the required form; the nullary operator is DeclListNil and the binary

operator is DecListPair.

The abstract syntax of the language accepted by the prototype is defined by the

following abstract-syntax declarations, written in SSL:

/* A program is a list of variable declarations followed by a list
of statements.*/
root program;
program : Prog(declList stmtList);

/* The list of variable declarations is either empty or is a list
of simple declarations. A variable can be declared to be of type
integer, boolean, or real. */

list declList;
declList: DeclListNilO

I DeclListPair (decl declList)

)

decl : Declaration(identif ier typeExp)

;

typeExp : EmptyTypeExpO /* empty type */

I IntTypeExpO /* integer type */

I BoolTypeExpO /* boolean type */

I RealTypeExpO /* real type */

>

identifier: Identif ierNullO
I Identif ier (IDENTIFIER)

t

list stmtList;
stmtList: StmtListNilO

I StmtListPair(stmt stmtList)

/* The statements supported are empty, putline, get (identif ier)

,

put (exp), assignment statements, if-then-else statements, while
statements, or a composition of them. */
stmt : EmptyStmtO

I PutLineQ
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I Get (identifier)
I Put (exp)

I Assign(identif ier exp)

I IfThenElse(exp stmtList stmtList)
I While(exp stmtList)

I Compound (stmtList)

/* The following expressions are allowed. */

exp : EmptyExpO
I IntConst (INTEGER)

I RealConst (REALTYPE)

I TrueO
I FalseO
I Id(identif ier)
j Equal, LT, GT, LE, GE(exp exp)

I NotEqual(exp exp)

I Add, Sub, Mult, Div, And, Or (exp exp)

I Uminus, Not, Abs(exp)

6. 3. 2.2 Attributes and Attribute Equations

In addition to the grammar rules that define the language’s abstract syntax, the

editor specification contains declarations that define how to make static inferences

about the objects being edited. The following constraints are defined in the specifi-

cation of our prototype:

1. a declaration must be supplied for all identifiers used in the program,

2. an identifier must be declared at most once, and

3. the constituents of expressions and statement must have compatible types.

In the following declarations, at the root of the program tree, an environment

attribute named env contains the type binding of each identifier. In addition, each

expression and subexpression has an associated type attribute. The type of an iden-

tifier used in an expression is determined by accessing the environment at the root.

Local attributes are attributes that are associated with a particular production rather
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than with each production of a nonterminal. Local attribute declarations differ from

those of ordinary attributes in that the keyword local is used in place of synthesized

or inherited; they also differ in that local attribute declarations are placed among

a production’s attribute equations.

The above constraints are specified using attribute equations which are expressed

in SSL as follows:

program : Prog { local declList env;

env = declList;

>;

/* An identifier can only be null or declared only once. */

decl : Declaration {local STR error;
error = (identifier != Identif ierNull

&& NumberOfDecls(identif ier , {Prog. env}) > 1)

? "{MULTIPLY DECLARED}" :
"";

};

/* If the identifier is null set its type to be empty; otherwise
look up its type in the program environment at the root of the
tree. */

identifier, exp {synthesized typeExp type;};
identifier: Identif ierNull {identif ier .type = EmptyTypeExp;

}

I Identifier {identif ier .type =

LookupType ( ident if ier , {Prog . env} ) ;

}

I

/* Check the type compatibility in each statement. */
stmt : Assign {local STR assignError;

local STR error;
assignError = IncompatibleTypes (identif ier .type, exp. type)

? "{INCOMPATIBLETYPES IN :=}" :

error = (identifier == Identif ierNull j

|

IsDeclared(identifier
, {Prog. env}))

? ""
: "{NOT DECLARED}";

}

I Get{
local STR error;
error = (identifier == Identif ierNull |

|

IsDeclared( ident if ier, {Prog. env}))
? ""

: "{NOT DECLARED}";
}

I IfThenElse, While { local STR typeError;
typeError= IncompatibleTypes (exp. type, BoolTypeExp)
? "{BOOLEAN EXP NEEDED}" :

}

i

/* Set the type of each expression according to the
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following rules. */

exp : EmptyExp {exp. type = EmptyTypeExp;}
I IntConst {exp. type = IntTypeExp;}
I RealConst{exp.type = RealTypeExp;

}

I True {exp. type = BoolTypeExp;}
I False {exp. type = BoolTypeExp;}
I Id {

local STR error;
error= (identif ier==Identif ierNull |

|

IsDeclared( identifier, {Prog. env})

)

? ""
: "{NOT DECLARED}";

exp. type = identif ier. type;

}

I Equal, NotEqual, LT, LE, GT, GE{
local STR error;
error= IncompatibleTypes(exp$2 .type, exp$3.type)

? "{INCOMPATIBLE TYPES}" :

exp$l.type = BoolTypeExp;
}

I And, 0r{
local STR leftError;
local STR rightError;

leftError= IncompatibleTypes(exp$2 .type, BoolTypeExp)
? "{BOOL EXP NEEDED}" :

rightError= IncompatibleTypes(exp$3.type, BoolTypeExp)
? "{BOOL EXP NEEDED}" :

"";

exp$l.type = BoolTypeExp;
}

I Add, Sub, Mult, Div{
local STR error;
error= IncompatibleTypes(exp$2 .type, exp$3.type)

? "{INCOMPATIBLE TYPES}" :
"";

exp$l.type = exp$2.type;

I Abs, Uminus{
exp$l.type = exp$2.type;

I Not{
local STR error;
error= IncompatibleTypes(exp$2.type, BoolTypeExp)

? "{BOOL TYPE NEEDED}" :

exp$l.type = BoolTypeExp;

The following auxiliary functions are used in the above declarations:

/* Determine the first type bound to identifier i in environment e,
or EmptyTypeExp otherwise. */

typeExp LookupTypeCidentifier i, declList e) {
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with(e) ( DeclListNil : EmptyTypeExp,
DeclListPair(Declaration(id, t) , dl)

:

(i==id) ? t : LookupType(i, dl))

>;

/* Return true iff there exists a type bound to i in e. */

BOOL IsDeclared(identifier i, declList e){

with(e)

(

DeclListNil: false,
DeclListPair(Declaration(id, t) ,

dl)

:

(i==id) ? true : IsDeclared(i , dl))

>;

/* Determine the number of types bound to i in e. */

INT NumberOfDecls (identifier i, declList e){
with(e)( DeclListNil: 0,

DeclListPair(Declaration(id, *) , dl)

:

((i==id)? 1:0)+ NumberOfDecls(i , dl))

>;

/* Return true iff type tl is incompatible with type t2. */

BOOL IncompatibleTypes(typeExp tl, typeExp t2){
(tl != EmptyTypeExp) && (t2 != EmptyTypeExp) && (tl != t2)

>;

6.3.2.3 The Unparsing Declarations of the Editor

The unparsing rules of the editor define not only the display format, but also

which node of the abstract syntax tree are selectable and which productions of an

object is editable as text.

The unparsing rules defines a display representation for each production of the

abstract syntax declaration. Each rule may take one of the following two forms:

symbol : operator [leftside : rightside];

symbol : operator[leftside ::= rightside
];

The choice of the symbol ‘
'

:
'

' or determines whether or not a production

can be edited as text. The symbol ’ indicates that it is permitted to edit the

production’s text; the symbol ‘
*

:
’ ’ indicates that the production is treated as an

indivisible unit. The display is generated by a left-to-right traversal of the tree that
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interprets the unparsing schemes. Indentation, back indentation, and line breaks are

controlled by the control characters
' ‘

'/,t
'

' ,

' '
'/.b

'

;

,
and ‘ ‘

'/.n
'

' respectively. The

selection symbol ‘
' 0 ‘ ’ specifies that an occurrence is a resting place; whereas the

symbol ‘ ‘ ~ ’ ' specifies that it is not.

The following are the unparsing rules of our editor written in SSL:

program : Prog [0:

"with TEXT.IO, INTEGER, 10, FL0AT_I0;‘/.n"

"use TEXT, 10 , INTEGER, 10, FLOAT, 10 j’/.n"

"procedure Main is'/,t'/,n"

0 "’/.b’/.n"

"begin" "’/,t'/,n"

0 "'/,b'/,n"

"end Main;'/,n"]

declList

decl
typeExp

DeclListNil [0 ::=]

DeclListPair [0 : := “ [";‘/.n"]

Declaration [~
:

EmptyTypeExp [0

IntTypeExp [®

BoolTypeExp [0

RealTypeExp [0

3 error :

"<type>"]
"integer"]
"boolean"]
"float"]

«];

identifier: Identif ierNull [C

I Identifier ['

:= "<identif ier>"]
:= ']

stmtList: StmtListNil [0 :]

I StmtListPair [0 :
~ ["’/.b'/.n"] 0]

stmt : EmptyStmt [" ::= " It " "<statement>"]
PutLine [~ stmtno II

•/.t" "new_line; "]

Get c~ := stmtno II Xt" "get(" 0 error
Put [“ := stmtno II

’/.t" "put (" 0 ");"]

Assign [“
: := stmtno "

*/.t" 0 error " := ' 0 ";

assignError]
I IfThenElse[“ : stmtno "

'/,tif " 0 typeError " then" "'/,t*/,n"

0 ,,,
/.b*/.n"

"else'/.n"

0 "'/.b'/.b'/.nend if;"]
I While [“ : stmtno " '/.twhile " 0 typeError " loop" "'/,t*/,n"

0 "’/.b’/.by.nend loop;"]
I Compound [~ : "begin" "'/,t'/,n"

0 "'/.b'/.b'/.n"

"end;"]

exp : EmptyExp [“ ::= "<exp>"]
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IntConst [“

RealConst
['

True ['

False
Id
Equal
LT
LE
GT
GE
NotEqual ['

[~
:

:

= ~]

= ‘I
= "true”]
= "false"]
= ~ error]

= " error_ II

^
II

= »(" <g

= »(" Q
= ••(» q
= "(" a

And
Or

!
")"]

!
")"]

q ")"]

> " error <3 ")"]

>= " error <3 ")"]
’= " error <3 ")"]

< " error (

<= " error
" error

. _ it

^
i

>_ M err0r (Q

/= " error <3 ")"]

;Error " and " rightError (3 ")"]

;Error " or " rightError <3 ")"]

Add [“ = It

^
II

(3
II + II error (3 ")"]

Sub [~ = II

^
II

(3
II - II error <2 ")"]

Mult [‘ = II

^
II

(3
II * II error (3 ")"]

Div [- = II

^
II

<3
II

/
II error (3 ")"]

Not [“ = "not ("
(3 error")"]

Abs [~ = "abs(" C ") "]

Uminus [‘ = II _ " (3 ]

6.4 The Incremental Code Generator

In a system which supports interactive program development, testing and debug-

ging, it is desirable to provide the ability to initiate execution at any time and have

the program being executed immediately, with no delay for compilation. Such a sys-

tem should maintain the program in an executable form at all time and update the

program’s object code in accordance with changes to the program’s source code.

6.4.1 Incremental Compilation Using Attributes

Incremental compilation is an obvious application for an incremental attribute-

updating mechanism, such as the one found in the Synthesizer Generator. By in-

crementally updating attributes whose defining equations express the generation of

executable code, a language-based editor can produce and maintain target code as

programs are created and modified.

Coupling an incremental compiler with a language-based editor has other benefits

as well. Because the editor has knowledge available to it about which portions of
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the program are incomplete, it can generate Halt instructions for those locations.

This makes it possible to execute incomplete programs until a Halt instruction is

encountered.

6.4.2 Generating Code Graphs Using SSL

The chief issue in using an attribute grammar to generate and update object code

is how to limit the extent of recompilation. For example, one would like to have the

property that when a single expression or assignment statement is modified, updates

are limited to just a few of the tree’s code fragments. In our implementation, individ-

ual code fragments are located in attributes distributed throughout the program tree;

however, they are linked together into a code graph for the entire program. Compo-

nents of each fragment provide links to other fragments. The interpreter executes the

fragments directly; initially, the interpreter is passed a link to the first fragment of

the program; other fragments are accessed, as necessary, by following the appropriate

links.

The individual code fragment consists of instructions for an abstract stack ma-

chine and is similar to the P-code used by some Pascal compilers. The code’s syntax

is defined by the following SSL specification of the phylum CODE:

/* The abstract-syntax and the unparsing specifications of the
phylum CODE. */
CODE : HaltO [“ "Halt"]

1 Quit() [“ "Quit"]
1 Putline(LINK LINK) [~ "Putline " “

1 PushVar(identif ier LINK) [~ "PushVar ~
]

1 Store(identifier LINK LINK) [~ "Store "“ ~

1 Getlnt (identifier LINK LINK) r "Getlnt
*

1 Putlnt (LINK LINK) c~ "Putlnt " “

1 PushInt(INT LINK) [“ "Pushlnt "~ *
]

1 IsEqlnt (LINK) [- "IsEqlnt " ‘
]

1 IsNotEqlnt (LINK) [- "IsNotEqlnt II
***

1 IsLtlnt (LINK) [~ "IsLtlnt " ~
]

1 IsLelnt (LINK) [- "IsLelnt " “
]

1 IsGtlnt (LINK) [- "IsGtlnt " “
]

1 IsGelnt (LINK) [- "IsGelnt " ~
]
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I Addlnt (LINK)

I Sublnt (LINK)

I Mult Int (LINK)

I DivInt(LINK)
/* similar instructions for type

I AndBool(LINK)
I OrBool(LINK)
I NotBool (LINK)

I PushBool(B00L LINK)

I IsEqBool(LINK)
I IsNotEqBool(LINK)
I Branch (LINK LINK LINK)

[~
: "Addlnt” “

]

[‘
: "Sublnt" “

]

[“ : "Multlnt" *
]

[“ : "Divlnt" “
]

deleted. */
[“ : "AndBool" “

]

[“ : "OrBool" “
]

[* : "NotBool" “
]

[“ : "PushBool "~ ~
]

[* : "IsEqBool " *
]

[“ : "IsNotEqBool " “
]

[~ : "Branch " “
]

The construction of the code graph is specified with two sets of attributes named

entry and next, which carry information used to link the fragmented code. The entry

attribute at the root of a given program segment is a link to the first instruction to be

executed in that segment. The next attribute at the root of a given program segment

is a link to the first instruction to be executed after the code for the given segment

has been completed.

The values of the entry and next attributes are incorporated into instructions

to establish the code graph. Each stmt incorporates the link stmt. next into its

code fragment, and passes up a link to the first instruction of this fragment in the

attribute stmt. entry. Intermediate nodes in the abstract-syntax tree, such as each

StmtListPair node in a statement list, merely pass on linking information in their

entry and next attributes.

Example. Attributes entry and next are passed through the operators of the

phylum stmtList as follows:

stmtList : StmtListNilfstmtList . entry = stmtList .next;}
I StmtListPair{stmtList$l . entry = stmt. entry;

stmt. next = stmtList$2 .entry

;

stmtList$2.next = stmtList$l .next :};
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The equation that defines the entry point of the conditional-statement also il-

lustrates how intermediate nodes in the abstract-syntax tree merely pass on linking

information:

stmt : IfThenElse{stmt$l . entry = exp. entry;};

This equation defines the entry point of the statement to be the entry point of the

expression; whatever statement precedes the IfThenElse will receive a link to the

expression, allowing the interpreter to jump to the expression directly rather than

making a jump to the conditional-statement and then jump to the expression.

The semantics of the individual control constructs of the source language are ex-

pressed in terms of CODE as follows. Each construct has an associated code fragment,

which is defined as the value of a local CODE-valued attribute. The link constructed

from this fragment is passed to other components of the program using the entry

and next attributes.

Example. The Prog operator has one code fragment represented by the local

attribute named code. The code fragment consists of a single Quit instruction.

The link formed from the attribute code is passed down the abstract-syntax tree,

providing access to the final instruction to be executed when the program’s body has

completed:

program : Prog {local CODE code;
code = Quit;
stmtList .next = MakeLink(code)

;

>;

The abstract-syntax tree contains error attributes that indicate the presence or

absence of errors in the program. Thus, Assign operator’s code is a Halt if either

of two error conditions holds, indicated by particular values of the attributes named

assignError and identifier .type:
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stmt : | Assign{ local CODE code;
code = (assignError != ""

I I identifier .type ==

EmptyTypeExp)
? Halt : Store (ident if ier , stmt. next, stmt . entryno)

;

stmt. entry = exp. entry;
exp. next = MakeLink(code)

;

>

6.4.3 Links and Circularities

In using attribute grammar to specify the generation of a code graph the question

of circularities naturally arises. In particular, in creating the code for loops, we have

to be careful to avoid circular dependencies in the specification.

Obviously, linked code for loop constructs has to be circular at some level; how-

ever, we must be careful not to confuse two different kinds of cicularities. The kind

of circularity that causes problems in SSL is a circular dependence in a specification’s

attribute equations
;
the circularity that is inherent in code for loops is a circular in

the representation for the code, i.e. a circularity within attribute values.

To break up the circularity, we introduced one level of indirection into the gen-

erated code by making use of the built-in, primitive phylum ATTR to implement the

links. In essence, this breaks the circularity because some of the edges of the de-

pendence cycle are replaced by attribute references; which do not add dependencies

between attribute instances.

The following is the specification in SSL of the incremental code generator:

/* The following is a mechanism to circumvent the circularity
in the code attribute specification by making use of
indirection. */
’/.[

#def ine LINK ATTR
#define MakeLink(x) (&&x)
FOREIGN CodeForLink(a) /* SSL type: CODE */

PROD_INSTANCE a; /* SSL type: ATTR */

return(demand_value(AttrValue(a)) )

;

>
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CODE foreign CodeForLink(LINK a)

;

/* For each statement and expression define a synthesized
attribute entry and an inherited attribute next . */

stmt, stmtList { syn LINK entry;
inh LINK next

;

>;
exp { syn LINK entry;

inh LINK next

;

};
program : Prog {local CODE code;

code = Quit;
stmtList .next = MaieLink (code)

;

>;
stmtList : StmtListNil{

stmtList . entry = stmtList .next

;

>

I StmtListPair{
stmtList$l . entry = stmt. entry;
stmt. next = stmtList$2 .entry;
stmtList$2.next = stmtList$l .next

;

>

9

stmt : EmptyStmt{ local CODE code;
code = Halt

;

stmt. entry = MakeLink(code)

;

>

I PutLine{ local CODE code;
code = Putline(stmt .next

, stmt . entryno)

;

stmt. entry = MakeLink(code)

;

}

I Assign{ local CODE code;
code = (assignError != ""

II identifier .type ==

EmptyTypeExp) ? Halt : Store(identifier , stmt. next,
stmt . entryno)

;

stmt. entry = exp. entry;
exp. next = MakeLink(code)

;

>

I Get { local CODE code;
code = (identifier .type == EmptyTypeExp)

? Halt : (identifier. type == IntTypeExp) ?

Getlnt (identifier
, stmt. next, stmt . entryno)

:

GetReal (identifier, stmt. next, stmt . entryno)

;

stmt. entry = MakeLink(code)

;

}

I Put { local CODE code;
code = (exp. type == EmptyTypeExp)

? Halt : (exp. type == IntTypeExp) ?

Put Int( stmt. next, stmt . entryno)

:

PutReal(stmt .next
, stmt . entryno)

;

stmt. entry = exp. entry;
exp. next = MakeLink(code)

;
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}

I IfThenElse{ local CODE code;
code = (typeError != "") ? Halt

: Branch (stmtList$l .entry, stmtList$2. entry, stmt . entryno)

;

stmt. entry = exp. entry;
exp. next = MakeLink(code)

;

stmtList$l .next = stmt. next;
stmtList$2 .next = stmt. next;

>

I While{ local CODE code;
code = (typeError !="") ? Halt

: Branch(stmtList . entry , stmt. next, stmt . entryno)

;

stmt. entry = exp. entry;
exp. next = MakeLink(code)

;

stmtList .next = exp. entry;

>

I Compound { stmt. entry = stmtList .entry;

stmtList .next = stmt. next;

>

9

exp : EmptyExp{ local CODE code;
code = Halt;

>

I IntConst{ local CODE code;
code = Pushlnt (STRtoINT (INTEGER) , exp. next);
exp. entry = MakeLink(code)

;

>

I RealConst{ local CODE code;
code = PushReal(STRtoREAL(REALTYPE) , exp. next);
exp. entry = MakeLink (code )

;

>

I True{ local CODE code;
code = PushBool(true, exp. next);
exp. entry = MakeLink(code)

;

}

I False{ local CODE code;
code = PushBool(false, exp. next);
exp. entry = MakeLink(code)

;

>

I Id{ local CODE code;
code = (identifier. type== EmptyTypeExp) ? Halt

: PushVar (identifier, exp. next);
exp. entry = MakeLink(code)

;

>

I Equal{ local CODE code;
code = (error != "") ? Halt
:(exp$2.type == IntTypeExp) ? IsEqlnt (exp$l .next)

:(exp$2.type == RealTypeExp) ? IsEqReal(exp$l .next)
: IsEqBool (exp$l . next)

;

exp$l. entry = exp$2. entry;
exp$2.next = exp$3. entry;
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exp$3.next = MakeLink(code)

;

}

/* Similar equations for NotEqual, LT, LE, GT, and GE are deleted. */

I Add { local CODE code;
code = (error != "") ? Halt

:(exp$2.type == IntTypeExp) ? Addlnt(exp$l .next)
: AddReal(exp$l .next)

;

exp$l. entry = exp$2. entry;
exp$2.next = exp$3. entry;
exp$3.next = MakeLink (code)

;

}

/* Similar equations for Sub, Mult, and Div are deleted. */

I Abs-f local CODE code;
code = (exp$2.type == IntTypeExp) ? Abslnt (exp$l .next)

: AbsReal(exp$l .next)

;

exp$l. entry = exp$2 . entry;
exp$2.next = MakeLink(code)

;

>

I Uminus{ local CODE code;
code = (exp$2.type == IntTypeExp) ? Uminuslnt (exp$l .next)

: UminusReal(exp$l .next)

;

exp$l. entry = exp$2. entry;
exp$2.next = MakeLink(code)

;

>

I And{ local CODE code;
code = (leftError != ""

| | rightError != "") ? Halt
: AndBool (exp$l . next )

;

exp$l. entry = exp$2. entry;
exp$2.next = exp$3. entry;
exp$3.next = MakeLink(code)

;

>

\* Similar equations for Or is deleted. */

I Not{ local CODE code;
code = (error != "") ? Halt

: NotBool(exp$l .next)

;

exp$l. entry = exp$2. entry;
exp$2.next = MakeLink(code)

;

>

6.5 The Interpreter

The interpreter is a simple stack machine with a single run-time stack and an

environment which is implemented as an SSL list. The environment consists of a list of

two elements tuples representing the program’s variables and their values. A pointer

to the first instruction of the program’s object code is passed to the interpreter. The
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interpreter executes each instruction with the operands being a value read from the

keyboard or the value at the top of the stack or both. The result of each instruction is

stored on the run-time stack. When the interpreter encounters a Halt instruction, it

stops the execution and allow the user to examine the values of the variables from the

environment list. When a Quit instruction is encountered, the values of the variables

are written out for the user. The interpreter also produces the execution path taken

by a test case as a list of statement numbers, as well as the definition-use chains

covered by that test case. This information is used by the run-time environment to

update a database of test cases and related information.

6.6 The Incremental Data Flow Analyzer

A definition of a variable x is generated by a statement that assigns, or may assign,

a value to x. The most common forms of definitions of x are generated by assignment

statements to x and statements that read a value into x. A definition of x is called

unambiguous if x is assigned a value by a statement, such as an assignment or a read

statement. A definition of x is called ambiguous if x may be assigned a value by a

statement. An if statement or a call statement to a procedure which may modify the

variable x are examples of such statements that cause an ambiguous definition for x.

A definition d is said to reach a point p in the program if there is a path from the

point immediately following d to p such that d is not redefined along that path. A

definition of a variable x is killed along a path if that path contains an unambiguous

definition of x.

A solution of the reaching definitions problem can be described in terms of

Gen(S), Kill(S), Out(S), and In(S) of a statement S. Sets Gen(S), Kill(S), and

Out(S) are synthesized attributes which are computed bottom-up from the leaves of
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a syntax tree up to its root. A definition d is in Gen(S) if d is generated by state-

ment S. Kill(S) is the set of definitions that never reach any statement following S

directly. Out(S) is the set of definitions that may reach the statements that follow

S directly. In(S) is an inherited attribute which represents the set of definitions that

may reach statement S.

The following attribute equations are used to generate the reaching definitions

[
5

. p. 612]:

1. S—* “an assignment or a read statement that defines a variable a”

Gen(S) = {d}

Kill(S) = Da -{d}

Out(S) = Gen(S) U (In(S) — Kill(S))

where d is the definition of a at statement S
,
and Da is the set of all definitions

of a in the program.

2. S—> a/3

3 . S ai|a2
|

Gen(S) — Gen((3) U
(
Gen(a

)
- Kill{0))

Kill(S) = Kill(p) U (Kill(a) - Gen(P))

In(a) — In(S)

M0) = Out(a)

Out(S) = Out(p)

a„. For all 1 < i < n, we have:

Gen(S) =
(J Gen(cii)

i=i
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Kill(S)

/n(a,)

Out(S)

f| KiU(ai)
i=

1

In(S)

U Out(ai)
1=1

4. 5 —> a+ (Note: 5 —* a* is equivalent to S —* e|a+ .)

Gen(S) = Gen(a)

Kill(S) = Kill(a)

In(a) = In(S) U Gen(a)

Out(S) = Out(a)

6.7 The Run-time Interface

The run-time interface allow the user to run a test case, know which definition-

use chains covered by it, know which definition-use chain are yet to be tested, and

query the content of the database. A menu of commands is available to the user at

all time. An output buffer records the output from the user’s program and queries.

This buffer can be stored for later examination.

As a user is modifying a program, the incremental data flow analyzer maintains

the deleted and added definition-use chains. The environment maintains the set of

definition-use chains that need to be tested to achieve the required coverage criteria.

When the user decides to revalidate a program, he can use the system to determine

which existing test cases need to be rerun. The system searches the database for

existing test cases associated with any of the deleted chains. The interpreter is

designed to generate the chains covered by each test case during the execution. The

system uses these chains to update the database. Before rerunning an existing test
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case the user has to decide whether the change has made the test case obsolete or not.

In generating new test cases, the user selects an untested chain and asks the system

for suggested input values. Assuming the chain under consideration is (v,ni,n2 ), the

system will search the database for a test case associated with a tuple of the form

The input values for that test case can be used by the user as a starting

point in finding the required input values by incrementally changing each input value.

When a test case detects an error, the statements corresponding to the chains covered

by it alone are highlighted on the screen. The user may proceed with running more

test cases if he can not determine the location of the fault.

The system also reports to the user the values of the program variables at the

end of each test case execution and the execution path taken by it. In addition, the

user can run partial programs; execution halts if a template for a missing program

element is encountered.

6.8 A Sample Session

The program below is the same program given in Chapter 4. Remember that the

is specified to compute ^/p, for 0 < p < 1 to accuracy e; where 0 < e < 1. The

statements of the program are numbered for later reference. The number assigned

to each statement appears before it on the line. The program contains a fault; the

statements 12 and 13 should be interchanged.

1 get (p)

;

2 get (e)
;

3 d := 1.0;
4 x := 0.0;
5 c := (2 . 0 * p) ;

6 if (c < 2.0) then

7

while (d > e) loop
8 d := (d / 2.0);
9 t := (c - ((2.0 * x) + d));
10 if (t < 0.0) then

11 c := (2.0 * c);
else
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12 x := (x + d)
;

13 c := (2.0 * (c - ((2.0 * x) + d)));
end if;

end loop;

14 put(x);
15 new_line;
else

9 put ( -1)

;

17 new_line;
end if;

end;
end Main;

To see what are the definition-use chains that need to be tested, we issued a

show-all-chains command. The output was as follows:

All definition-use chains:

{<C , 5
1,
7>, AO 5, CD V <c, 5, 11>, <c, 5, 13> AO

, 5, 16>

,

<c, 11:
,
9>

,

<c. 11
,

11>
, <c, 11, 13> , <c

,

13, COV <c, 13, 11>,
<c. 13:,

13>
, <d , 3 , 8>

,

<d, 3, 14> , <d, 8
,
8>

, <d
j, 8, 9>

,

<d, 8, 12>

,

<d, 8, 13>

,

<d, 8, 14> , <e , 2 ,
8>

, <e
,, 2, 14>,

<p» 1, 5>

,

<t. 9, 11>, <t, 9, 12> , <x , 4, 9>

,

<x, 4, 12>

,

<x, 4, 14>, <x, 12 , 9>

,

<x, 12, 12>, <x, 12, 13>

,

<x, h-*-
to

h-*- V

Then we executed the first test case with p = 2.0 and e = 0.5 the output of the

program was —1 which is correct. The following is a record of the rest of the session

with commands marked by a # mark at the beginning of the line.

# show-du-chains-covered-by-last-case

The chains covered only by last test case:

{<c, 5, 16>, <p, 1, 5>>

# run-test-case
# 0.5 1.0

0.000000

#show-exit-status

Terminate normally.
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Final state:

<p : 5 . 000000e-01>
<e : 1 . 000000e+00>
<d : 1 . 000000e+00>
<x : 0.000000e+00>
<c : 1 . 000000e+00>
Execution path:

1, 2, 3, 4, 5, 6, 7, 14, 15,

# run-test-case
# 0.16 0.3

0.250000

# run-test-case
# 0.36 0.3

0.500000

# show-untested-du-chains

The untested chains:

{<c, 11, 11>, <c , 13, 13> , <x , 12, 12>}

# run-test-case
# 0.04 0.3

0.000000

# show-du-chains-covered-by-last-case

The chains covered only by last test case

{<c, 11, 11»

# show-untested-du-chains

The untested chains

:

{<c, 13, 13> , <x , 12, 12>>

# run-test-case
# 0.9 0.2

0.625000
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At this stage we recognized that the output is incorrect, so we wanted to know

the definition-use chains covered only by the last test case. These chains may be

associated with the statements causing the error.

# show-du-chains-covered-by-last-case

The chains covered only by last test case:

{<x, 12, 12>>

# show-untested-du-chains

The untested chains:

{<c, 13, 13>>

Here we stopped testing and exchanged the statements 12 and 13 to correct the

program. Before continuing with testing, we asked the system to determine which

existing test cases should be rerun. The answer was the test cases numbered 3, 4,

and 6. The system also updated its database to make consistent with the program’s

code.

# show-test-cases-to-be-rerun

The following test cases should be rerun:

3, 4, 6

# show-database-contents

The database contents:

Test case: 1

{<c, 5, 16>, <p, 1, 5>>
Test case: 2

{<c, 5, 7> , <d, 3, 14>, <e
, 2, 14>, <p, 1, 5>, <x, 4, 14>>

Test case: 5

{<c, 5, 7> , <c , 5, 9> , <c
, 5, 11>, <c , 11, 9>, <c, 11, 11>,

<d, 3, 8> , <d, 8, 8> , <d, 8, 9>, <d, 8, 14>, <e, 2, 8>, <e, 2, 14>,
<p, 1, 5>, <t, 9, 11>, <x

, 4, 9> , <x
, 4, 14>>
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When we executed the three test cases again they all executed correctly, complet-

ing all-uses coverage criteria.

# show-untested-du-chains

The untested chains

:

o
# show-database-contents

The database contents:

Test case: 1

{<c, 5, 16> , <p, 1, 5>}
Test case: 2

{<c, 5, 7>, <d, 3, 14>, <e, 2, 14>, <p, 1, 5>, <x, 4, 14>>
Test case: 5

{<c, 5, 7>, <c, 5, 9>, <c, 5, 11>, <c , 11, 9>, <c, 11, 11>,
<d, 3, 8> , <d, 8, 8> , <d, 8, 9> , <d, 8, 14>, <e, 2, 8> , <e, 2, 14>,
<p, 1, 5> , <t, 9, 11>, <x, 4, 9> , <x , 4, 14>}
Test case: 3
{<c, 5, 7> , <c , 5, 9> , <c

, 5, 11>, <c , 11, 9>, <c, 11, 12>,
<d, 3, 8> , <d, 8, 8> , <d, 8, 9>, <d, 8, 13>, <d, 8, 12>, <d, 8, 14>,
<e, 2, 8>, A CO 2, 14>, <p> 1, 5> , <t, 9, 11>, <t, 9, 12>

,

<x, 4, 9>, <x, 4, 13>

,

<x, 4, 12> , <x , 13, 14>}
Test case: 4
{<c, 5, 7>

, <c
, 5 CO V

•»
VV 5, 12> , <c , 12, 9> , <c , 12, 11>,

<d, 3, 8> , <d, 8, 8> , <d, 8, 9>, <d, 8, 13>, <d, 8, 12>, <d, 8, 14>,
<e

, 2, 8> , <e , 2, 14>, <p, 1, 5>, <t, 9, 11>, <t, 9, 12>, <x, 4, 9>,
<x, 4, 13> , <x , 4, 12> , <x , 13, 9> , <x, 13, 14>>
Test case: 6

{<c , 5, 7> , <c , 5, 9> , <c , 5, 12> , <c, 12, 9>, <c, 12, 12>,
<d, 3, 8> , <d, 8, 8> , <d, 8, 9>, <d, 8, 13>, <d, 8, 12>, <d, 8, 14>

,

<e
, 2, 8> , <e , 2, 14>, <p, 1, 5>, <t, 9, 12>, <x, 4, 9>, <x, 4, 13>,

<x, 4, 12> , <x , 13, 9> , <x , 13, 13> , <x, 13, 12>, <x, 13, 14>>

6.9 Related Work

Recently, there have been a considerable effort to develop such integrated pro-

gramming environments. Most notable among these are:

1. The Cornell Program Synthesizer(CPS) [55] is a programming environment

which includes a set of tools for creating, editing, executing and debugging
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programs. It has templates for most syntactic structures but assignment state-

ments and expressions are typed by the user as text. The Cornell Program

Synthesizer is implemented for PL/CS, a small subset of PL/I. Execution can

be performed at any time during program development. It is possible to run

incomplete programs; execution is suspended whenever a placeholder is encoun-

tered and can be resumed after the messing program element has been inserted.

After most editing changes to a program, it is still possible to resume execution,

though certain changes, such as modifying a declaration, destroy the possibility

of resuming execution.

2. The Incremental Programming Environment(IPE) [37] provides a template edi-

tor environment for all major syntactic structures. The program is manipulated

using a syntax directed editor, and its execution is controlled by a language ori-

ented debugger. When changes are made to the source program the smallest

unit for which code is generated is the procedure. The program modifications

cause the system to incrementally compile those pieces and incorporate them

into the executable version of the program

3. The Magpie [17] system does not use the template model, instead it extends

the text model of editing to incorporate syntax and semantic analysis. Magpie

incrementally analyzes the syntax and static semantics, immediately reporting

to the user any errors it finds; the user can fix the errors immediately but is

not forced to do so.

Our interactive programming environment [53] takes a step further by aiding the

user manage the test cases to be used later in debugging and regression testing.
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CHAPTER 7

INTERPROCEDURAL DEFINITION-USE DEPENDENCY ANALYSIS

7.1 Introduction

To extend the approach outlined in the previous chapters to handle programs

with more than one procedure, an efficient algorithm for determining the definition-

use chains across procedure boundaries is required. This chapter introduces a new

algorithm for interprocedural definition-use dependency analysis. Programs with

recursive procedures are also supported by the new algorithm. The new algorithm

makes use of existing algorithms for aliasing analysis. For the new algorithm to

perform the definition-use analysis incrementally, an algorithm for handling aliasing

incrementally should be used.

As current trends encourage program modularity, and the number of procedures

in a program continues to grow, interest in interprocedural data flow analysis has

continued to grow as well. Data flow analysis at the interprocedural level has usu-

ally been done by associating with each call site approximate summary information

about the effect of the called procedure. This summary information is adequate

for some applications such as certain code optimization techniques across call state-

ments. Summary information, however, is insufficient for some other applications

such as data flow testing.

In data flow testing, test cases are used to test a specified set of interactions

between the statements of the program under test. These interactions occur between

two statements when one statement assigns a value to a variable and that variable is

later referenced by the other statement before it is redefined. Based on the data flow

61
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in the program, test data adequacy criteria are used to select particular definition-use

chains that are identified as the test requirement for the program. Thus, data flow

testing requires the determination of the definition-use chains in the program [41].

The definition-use chains that exist across procedure boundaries
(
i.e interprocedural

definition-use chains) are thus needed for interprocedural data flow testing as well.

Analysis techniques to determine intraprocedural definition-use chains are well

known [5]. Solving the reaching definitions problem is usually the first step in deter-

mining the definition-use chains in a program. Several iterative [57], elimination [48],

and syntax-directed [5, 47, 45] methods have been devised to solve the intraproce-

dural reaching definitions problem. A number of interprocedural data flow analysis

techniques have been developed that are useful for parallelization and optimization.

Very few of these techniques compute adequate information to solve the interprocedu-

ral reaching definitions problem. Some of the existing techniques [3, 6, 15, 25, 38, 46]

provide summary data flow information to be used in determining the local effects of

called procedures at call sites. However, this information is not enough to determine

the interprocedural definition-use chains. Harrold has extended the program sum-

mary graph proposed by Callahan [9] to generate the required definition-use chains

[25]. The goal of this chapter is to describe a more efficient solution to the interpro-

cedural definition-use dependency analysis problem.

This chapter extends the syntax-directed method for intraprocedural data flow

analysis [5, p. 612] to handle the interprocedural reaching definitions problem. The

behavior of recursive procedures has been analyzed symbolically in detail. As a

result, we were able to simplify the process of deriving the required information for

recursive procedures. The derivation process is to convert a set of mutually recursive

procedures to self-recursive procedures which are further converted to non-recursive

procedures. The set of definitions generated and killed by each procedure is finally
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derived based on the equivalent non-recursive procedures. Definition-use chains are

then derived. Proofs of correctness as well as the analysis of complexity of the

algorithms are given.

This chapter is organized as follows: Section 2 provides background information.

In Section 3, the details of the proposed algorithm as well as a proof of its correctness

are given. In Section 4, related work is summarized.

7.2 Background

To simplify the notations and make the discussion more language-independent,

the following notations which are similar to those used in context-free grammars are

used throughout the chapter.

Two operators and “|” are used to represent the syntax of a program. Sj
• S2 ,

or S1 S2 for short, is a sequence of statements Si and £2 - Si IS^ is a selection between

either 5i or S'2 . £ is an empty statement, such that eS = Se = S. S* is £|5'|5S'| • • •

and S+ is SS*.

A pattern is everything on the right hand side of a production rule. A production

rule (or simply production) “A —> a” means a pattern a can be generated by A.

Clearly, the production process can only be finite for a non-recursive relationship.

Therefore, the interesting patterns in the context of this work are those with recur-

sive symbols. A terminal is a symbol which never appears on the left hand side of a

production rule. A nonterminal is a symbol which does appear on the left hand side

of some production rules. A term is a sequence of terminals and nonterminals. The

procedure being analyzed forms the starting symbol of the production process. Fur-

thermore, we say two patterns Pi and P2 are equivalent with respect to a function /,

denoted by UPX
= P2 (modulo /)”, if /(Pi) = /(P2 ). = P2 (modulo fi,...,fn )"

means “Pi = P2 (modulo /,) for all 1 < i < n”. The following laws also apply: (1)
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distributive law: X(YjZ) = XY\XZ and
(
X\Y)Z = XZ\YZ, (2) associative law:

(XY)Z = X(YZ) and {X\Y)\Z = X\(Y\Z), and (3) commutative law: X\Y = Y\X.

7.3 Approach

In this section, we first deal with procedures without formal parameters. Pro-

cedures with formal parameters as well as aliases will be discussed in Subsection

7.3.5. To analyze interprocedural definition-use dependency, we first calculate sets

Gen and Kill which will be used to calculate sets In and Out. Finally, the definition-

use chains in the program will be derived according to the In set. Examples will be

given to illustrate theorems and algorithms. In Subsections 7.3.1 to 7.3.5, a general

methodology to derive precise definition-use dependencies is presented. Subsections

7.3.1 and 7.3.2 deal with Gen and Kill sets of self and mutually recursive procedures

respectively. Subsection 7.3.3 generates the In and Out sets. Subsection 7.3.4 derives

the definition-use chains. Subsection 7.3.5 discusses aliasing. Several algorithms to

improve the performance are given in Subsection 7.3.6.

7.3.1 Gen and Kill Sets of Self-Recursive Procedures

A path from a statement to itself may exist because of loops or recursive calls.

Let a path from S back to itself be SaS. Since the definitions generated (or killed)

by the first S in the term SaS will also be generated (or killed) by the second S,

then SaS = aS (modulo Gen, Kill). The following lemma provides a formal proof.

Lemma 1 (Duvlicate Elimination)

SiS2 Si = S2S1 (modulo Gen, Kill)

or

Gen(SiSiSi) = Gen(S2S1 )

Kill(S1S2S1 )
= KilliSiSr)
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Proof. From basic set operations 1
: Kill(S2Si) = Kill(S2 )

— Gen(Si) U Kill(Si)

D Kill(Si). Therefore, Kill(SiS2Si) = Kill(Si) - Gen(S2Si) U Kill(S2Si) =

Kill(S2Si). Similarly, Gen(S2Si) = Gen(S2 )
- Kill(Si) U Gen(Si) D Gen(Si).

Thus Gen(SiS2 Si) = Gen(Si) - Kill(S2 )
U Gen(S2 Si) = Gen(S2 Si).

The following corollary explains how to simplify a loop statement.

Corollary 1 (Loop Elimination)

(S)
+ = S (modulo Gen, Kill)

(S)* = elS
1

(modulo Gen, Kill).

The approach to determine Gen and Kill of a self-recursive procedure R is to

transform it into a non-recursive procedure which is equivalent to R with respect to

Gen and Kill. This may be done by in-line substituting the body of R for each call

statement to itself. However, such in-line substitution process will not terminate.

Theorem 1 proves that one in-line substitution is enough for determining Gen and

Kill
;
provided that after the first in-line substitution each call statement to R is

replaced by a statement T. Statement _L absorbs all statements on the same execution

path, leading to or led by J_, i.e., S X = J_ S = X and S
|

_L = _L
|

S = S' for any

statement S. Semantically, Gen(L) = 0 and Kill(±.) = fi, where ft is the set of all

definitions in the program.

Theorem 1 (Self-Recursive Procedure

)

Let the body of a self-recursive procedure R be

represented as f(R), then R = /(/(_L)) (modulo Gen, Kill).

Proof. Let f(R) be expanded in the form C\Au (R)RSi 2
\

• |Anl (i?)i?<5n2 ;
where

Aji(R) may contain zero or more R's but Sj2 does not contain any R. Clearly,

C = fU) (7.1)

X In this chapter, all set operations are computed from left to right unless the order is explicitly
indicated by parenthesis.
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Let 8jt = Aj*(e). Consider a production rule R — 8iR82R83 . From Lemma 1,

8\R82R83 = 8\82R83 (modulo Gen, Kill)

which means that only the last self-recursive symbol is important in computing Gen

and Kill sets. Furthermore,

Kill(SiS2S3 ) 2 Kill(S2 )
D Kill(SiS3)

because

Kill(S2 )
n I<ill{SiS,,)

= I<ill(S2 )
n (AT//(SX )

- Gen(S3 )
U ATH/(S3 ))

= (Kill(S2 )
n (tfi//(S'i) - Gen(S3))) U (

Kill(S2 )
D Kill(S3 ))

C
(
I<ill{S2 )

- Gen(S3 )) U Kill(S3 )

= Kill(S2S3 )
C Kill(SiS2S3 ).

Hence, the substitution of a term 8j\R8j2 into R in 8nR8{2 can also be ignored because

K111(8^(8^RS^)) = Kill{8tl R(8jl R8]2 )8l2 )
D Ktll(8tlR8,2 )

n I<ill(8jlR8j2 ).

Therefore,

KiU(R) = kui(c

)

n (n^KiUiSfiRSji)) = KiU(C) n (n^KiUiSflCSji)). (7.2)

Similarly,

Gen(SiS2S3 )
C Gen(SiS3 ) U Gen{S2 ),

because

Gen{SiS2S3 )
= Gen(S\) — Kill(S2 ) U Gen(S2 )

— Kill(S3) U Gen(S3 )

C (Gen(5i) - Kill(S3 ) U Gen(S3 )) U Gen(S2 )

= Gen(SiS3 )
U Gen(S2 ).
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procedure add is

begin

if x = 1 then

s := s + 1 ;
— 3

else

s := s + x; — 4

x := x - 1; — 5

add ;
— 6

x := x + 1 ;
— 7

end if;

end add;

Figure 7.1. An example of a self-recursive procedure.

Hence,

Gen(8n(8jiR6j2)8i2) = Gen(8nR(8j 1 R8j 2 )8i2 )
C Gen(8nR8i2 )

U Gen(^j 1 /26j2 ).

Therefore,

Gen(R) = Gen(C) U (U

;

=1 Gen(<5jlMj2 ))
= Gen{C) U ({J]=l Gen(8]1C8j2 )). (7.3)

From (1), (2), and (3),

R = C\8nC8i2\- •
• \8niC8n2 = C\An (C)C8i 2 \- \Ani(C)C8n2 = f(C)

= /(/(-L)) (modulo Gen, Kill).

The following example illustrates how to apply this theorem.

Example 1 (Self-Recursive Procedure

)

In Figure 7.1, the execution paths in proce-

dure add can be represented as S3lS4S5ftS7 - From Theorem 1
, f(±) = S3 IS4S5±S7 -

S3 and R = /(/(!)) = S3\S4S5S3S7 (modulo Gen, Kill). Hence, Gen(R) = Gen(S3 )

U

Gen(S4S5S3S7 )
= {(s,3),(x,7)} and Kill(R) = Ktll(S3)f)Kill(S4S5S3S7 )

= {(s,i)|? /

3}.
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7.3.2 Gen and Kill Sets of Mutually Recursive Procedures

The following theorem explains how to generate Gen and Kill for a group of

mutually recursive procedures.

Theorem 2 (Mutually Recursive Procedures) Let R x ,
R2 , . .

.

,

and Rn form a group of

mutually recursive procedures. Then the following process terminates and generates

the right result for Kill(Ri) and Gen{Rf) for all 1 < i < n.

1. Fori from 1 to n do: Let the body of Rj be represented as fi(Ri), then substitute

fi(fi(±.)) for each Ri in the body of Rj for all i < j < n.

2. For all i from n down to 1 do: Calculate Gen(Ri) and Kill(Ri) sets using the

derived Gen(Rj) and Kill(Rj) for all i < j < n.

Proof. Since the algorithm only goes through finite steps, it terminates. Fur-

thermore, each substitution generates equivalent patterns for each production rule.

Eventually, the final substituted production rules will hold the patterns generated by

the original production rules.

The following example explains how to generate the Gen and Kill sets of two

mutually recursive procedures.

Example 2 (Mutually Recursive Procedures without Aliasing) The program in Fig-

ure 7.2 contains two mutually recursive procedures Ri and R2 . The production rules

are Ri — S2 S3(e\R2 S6) and R2 —> According to Theorem 2:

1. Step l.(a) is null.

2. Step l.(b) R2 = e\S9S10(S2S3{e\R2S6))Si2 . Let C2 — e\S9Sio(S2S3)Si 2 by

substituting J_ for R2 in the right-hand side. R2 =
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procedure RI is procedure R2 is

begin begin

s : = s + x ;
— 2 if x /= 0 then

x := x - 1; — 3 x := x - 1; — 9

if x > 0 then s := s + x; — 10

R2

;

RI;

s := s+1 ;
— 6 X II X +

h-*

1 1
h-* to

end if; end if

;

end RI; end R2;

Figure 7.2. Mutually recursive procedures without aliasing.

Hence, Gen{R2 ) = {(a, 2), (a, 6), (a:, 12)}, and Kill{R2 ) = {}. Gen(R2 ),

Kill(R2 ), and production R\ are used to generate the following result:

Gen(Ri) = {(s, 2), (x, 3), (a, 6), (x, 12)}, and

Kill(Ri) = {(a, i)|i / 2, 6} U {(x, z)|z ^ 3, 12}.

7.3.3 In and Out Sets

The following two theorems provide the support for obtaining In and Out sets

for interprocedural analysis.

Theorem 3 (In Set

)

The set, In(Ri), of definitions reaching the entry point of

procedure Ri is:

In(K) = U Gen(AJ4 |ft(Aw|-|A^))
tj — Aj'iRjAj^Ri • • • Aj<aj RiAjj(Tj+ i

where, tj is any term on the right-

hand side of a production rule

such that Ri appears in tj, and

A

j

tk does not contain Ri for all k.

Proof. A definition can reach the entry point of a procedure only if it reaches

the beginning of a call statement to that procedure. In addition, a definition may
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reach a call statement only if its statement is executed before the call statement

and there is a definition-clear path between the two statements. Given that the

statements which may be executed before the call statement 72, are those which

appear before 72, in a term tj in a production rule for a procedure in the program

under consideration. If Gen and Kill are known for all procedures in the program,

then the set of definitions reaching a call statement from within the calling procedure

can be determined. Moreover, any definition in a program has to be defined by either

the main procedure or a procedure called by it. Set 7n(72,) of definitions reaching the

entry point of procedure 72; can be determined by taking the union of all definitions

reaching each call statement to 72,. Let tj be any term on the right-hand side of a

production rule such that 72, appears in tj, and tj = Aj^RjAj^Ri • • • A_,
i<7;

/2,AJ)Crj+1 ,

Aj,*; does not contain 72, for all k. Then 7rc(72,) is the union of the Gen set of the

following terms:

A;.i IA;, 1 Aj,2 1

• •
•

|

Aj'\RjAjp • • • RiAj'(Jj

= A?>il-^«A>2|
• •

• \RiAh(t]

= Ay,i |7?t (
Ayj2 1

• •
•

|

Ay
j<7> )

(modulo Gen, Kill).

For any procedure call statement R, it is easy to prove the following theorem from

the definitions.

Theorem A (Out Set) Out(R) = 7n(72) - Kill{R) U Gen(R)

7.3.4 Definition-use Chains

Given the Gen(S) and Kill(S) sets of definitions for each statement S in the

program including the call statements, the sets Out(S) can be determined given that

In(S) is known. The set In(S
)

for the first statement in the body of the main

program is the empty set. In addition, the In(S) for the first statement in the body
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of a procedure can be determined using Theorem 3 above. From In(S), it is easy

to determine In(e) for each expression e in statement S. The following algorithm

determines the definition-use chains in a program.

Algorithm 1 (Definition-Use Chains from In Set)

Input: A program P where the In set is determined for each expression.
Output: All definition-use chains of program P.
procedure Definition-Use-Chains-from-In is

begin

Def-Use-Chains(P) := {};
for each expression e in P loop

Uses(e) := the set of variables accessed by e;

From In(e) and Uses(e) determine the definition-use chains;

Add these chains to Def-Use-Chains(P).
end loop

;

end Definition-Use-Chains-from-In;

Proof. Since the number of expressions in a program is finite, the algorithm termi-

nates after a finite number of steps. The set of definition-use chains in a program is

the union of the definition-use chains incident on all expressions in it and hence the

algorithm produces all definition-use chains in a program.

Analysis. The algorithm accesses each expression only once and hence its complexity

is 0(1), where / is the size of the program. In the algorithm, an expression is assumed

to have no side effect. Expressions with side effects such as the ones which contain

function calls are decomposed into subexpressions such that each function call is

in a subexpression by itself. Given Gen and Kill of each function call, the set

of definitions reaching each subexpression can be determined in a straight-forward

manner.

7.3.5 Aliases

A major complication to the gathering of precise data flow information is created

when the same memory location is referred to by different names. These names are

called aliases. There are two ways in which aliases can be introduced. First, aliases

are introduced when reference parameter-passing maps two distinct variables to the



www.manaraa.com

72

same memory location at the same time. Second, the use of pointers introduces

aliases even in the absence of procedure calls.

To perform precise data flow analysis, the aliases of all variables in a program

have to be determined. In the past, several interprocedural data flow analysis algo-

rithms have been developed to compute data flow information to various degrees of

precision. As an example, Allen’s algorithm propagates information by processing the

procedures in reverse invocation order [3]. The premise of this approach is that if the

side effects of all called procedures are known, the side effects of the calling procedure

can also be determined. However, this approach does not apply to programs with

recursive procedures. Barth gathers data flow information in a single pass over the

program [6]. His method is easy to implement and is quite efficient, but is imprecise

in the presence of reference parameters. Chow presents an algorithm for determin-

ing aliases in programs that employ a rich set of parameter passing mechanisms and

pointer data types [8]. His approach handles the use of pointers bounded to a data

type as in Pascal, as well as unbounded pointers that can point to the same locations

to which variables map.

For the purpose of solving the reaching definitions problem, we assume that the

aliases of each variable in the program are already determined using an algorithm such

as the one mentioned in [8]. Each definition of a variable is considered a definition

for all of its aliases. Each use of a variable is treated as a use of all of its aliases as

well.

7.3.6 Speeding up the Basic Algorithms

Up to this point, we have proposed a methodology to derive precise definition-use

chains for a program with recursive procedures. In this subsection, we will propose

several algorithms to improve the performance.
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Procedure Definition-Use-Chains in Algorithm 2 determines all definition-use

chains in a program. The process can be summarized as follows: (1) Construct a

call graph from the source program. (2) Find all strongly connected components.

Each component represents either a single non-recursive procedure, a self-recursive

procedure, or a group of mutually recursive procedures. (3) For all strongly connected

components in invocation order, derive Gen and Kill sets for all procedures in the

components. (4) For all strongly connected components in invocation order, use Gen

and Kill sets to find the In set for each expression. (5) For each expression, use In

set to determine the definition-use chains to that expression.

In addition to Procedure Definition-Use-Chains, two more procedures, Gen-Kill-

Sets-of-Recursions and In-Set-of-Recursions are used in procedure Reaching-Definition-

Chains. Gen-Kill-Sets-of-Recursions derives the same result as that given by Theorem

2. However, the time-consuming substitution process in Theorem 2 has been elimi-

nated. Procedure In-Set-of- Recursions is an indirect result from Theorem 3. Instead

of finding all execution paths which may take a very long time to do, each In set in

a strongly connected component is updated iteratively. By doing this, the informa-

tion derived from various paths can be shared and the performance can be greatly

improved.

The correctness of Algorithm 2 is based on the three procedures used in it. Except

for procedure Gen-Kill-Sets-of-Recursions, they are straightforward. The correctness

of Gen-Kill-Sets-of-Recursions is proved right after it is given. The worst case of

procedure In-Set-of-Recursions is linear and the worst case of procedure Gen-Kill-

Sets-of-Recursions is exponential in terms of the number of recursive procedures

under analysis. However, in a practical situation, this number is usually bounded

by a very small constant and is independent of program size. Both procedures have
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linear complexity in terms of program length with operations on bit-vectors of size

equal to program length and are practical for most real applications.

Algorithm 2 (Definition-Use Chains

)

Input: A program P.

Output: Definition-use chains in program P.
procedure Definition-Use-Chains is

begin

Construct a call graph of the program.
— Gen and Kill sets

for each strongly connected component in the graph in reverse

invocation order loop

if only a single non-recursive procedure is involved in this component then

derive its Gen and Kill directly.

else

Call Gen-Kill-Sets-of-Recursions to get Gen{Rf) and Kill(Ri).
end if ;

end loop
;— In set

for each strongly connected component in the call graph in invocation order
loop

for each procedure Rt in the current group loop

Let A be the set of procedures p that calls Rl and does not form a recursive

relationship with R,.

In(Ri) := Upd Out (p).

Call /n-Set-of-Recursions to update /n(Rt ).

end loop
;

end loop
;

Call Definition-Use-Chains-from-In to determine the definition-use chains.
end Definition-Use-Chains;
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Algorithm 3 (Gen. Kill and In Sets of Recursive Procedures

)

Input: A set of procedures R\, i?2 , . .
. ,
Rn forming a mutually recursive relation-

ship

or a self-recursive procedure if n = 1 such that Ri —> /,(i?i, 7?2 ,
• • • ,

Rn )

for all 1 < i < n.

Output: Gen(Ri) and Kill(Ri) for all 1 < i < n.

procedure Gen-Kill-Sets-oi-Recursions is

procedure Gen-Kill- Iterative(fc) is

begin

if k — 1 then

ri := /i(ri,r2,...,rj;
ri := /i(ri,r2,...,rn );

else

Gen-Ki7/-Iterative(fc — 1);

rk := /it(ri,r2,...,rn );

/or i in 1..& — 1 loop ri := ±; end loop
;

Gen-/07/-Iterative(A; — 1);

rk = /fc(ri,r2,...,rn );

end «/

;

end Gen-A'i/Z-Iterative;

begin

for k in reverse \..n loop

for i in 1 ..k loop r, := ±; end loop
;

G'en-A77/-Iterative(fc);

end loop
;

for k in reverse l..n loop

Calculate Gen(Rk) and Kill(Rk) based on rk

.

end loop
;

end Gen-Kill-Sets-of-Recursions;

Proof. Let r, be the intermediate value in computing /?,. From Theorem 1, for

each self-recursive procedure R = f(R), we need two steps to get an equivalent non-

recursive procedure to R with respect to Gen and Kill. I.e., c = /( _L) and r = /(c).

Throughout the proof, we will always use c, to denote /(..., r.-x, J_, r,+1 , . .
.)

which

will be used to derive an intermediate value of r
t . We start with the elimination

process described in Theorem 2. The goal is to carry out the computation process

without substitution. Consider the case of n = 3. Let’s start with ri = /x(rx, r2 ,
r3 ).

From Theorem 1, ex = /i(±,r2 ,r3 )
and ri = /i(ci, r2 ,

r3 ). Now substituting rj in

r2 = /2(rx,r2,r3) results in r2 = /2 (/i(cx, r2 ,
r3), r2 ,

r3 )
and c2 = f2(fi(cu ±, r3 ), X

,r3 )
where r2 is substituted by J_. Therefore, cx = fx (

X, ±,r3) and = fx (cu ±,r3 ).



www.manaraa.com

76

Furthermore, r2 = /2 (/i(ci,

c

2 ,

r

3 ),

c

2 ,

r

3 ). Again the Ci and ri corresponding to this

r2 are Ci = /i(±,c2 ,r3 )
and ri = /i(ci,

c

2 ,

r

3 ). Using the same idea we can continue

the process to obtain rn . In the following table a derivation process for n = 3 is

given.

1 2 3 4 5 6 7

Cl /lU.-L.rs) /lfJ-.cg.rs) fi(-L,±,±) fl(J-,C2, 2-) /lU, X, C3 ) /i(X,c2 ,c3 )

ri fl(ci,T2 ,r3 ) /l(ci, l,r3 ) /l(ci,c2 ,r3 ) fi(cu ±,±) /l(ci,c2 ,X) fl(ci, X,C3 ) /l(ci,C2 ,C3)

Cl h(ri, X,r3 ) 1) /2 (»*1 >
X,C3)

T-i f2(ri,C2,r3 ) /2 (n.c2 ,X) /2(ri,c2 ,c3 )

C3 h(ri,r2 ,±)
T3 f3 (ri,r2 ,c3 )

The execution order is from top to bottom and then from left to right. Please
note that c, and r, need not exist at the same time (be., they can share the same
memory locations). In general, the relation through the iteration can be recursively
described as follows: Assume A(k) is a procedure to calculate rk if k > 1, and A(0)
is an empty statement. Then we have the following recursive relationship:

begin

r{ =_L V 1 < i < k

A(k - 1)

rk = /k(ri,r2,...,r*

)

ri =_L Vi ^ k

A(k-l)

— initialize r,-.

— get n, r2 , . .
.

,

ric-i.

— get first 7*fc in a column.
— reinitialize r,.

rk = fk(ri,r2,...,rk )

end
;

This recursive relationship derives procedure Gen-Kill-Iterative(fc) except that the

first initialization process “r, =_L for 1 < i < k” has been moved out to improve the

performance. The other statements in procedure Gen-Kill-Sets-of-Recursions simply

go through each rk for 1 < k < n
,
and the derivation of Gen(k) and Kill(k) sets is

based on rk .

Analysis. Let h(k) be the number of function operations /,(t*i . . . rn )
required in Gen-

Kill-Iterative( k
) ,
then h(k

)

= 2h(k - 1) + 2; where h( 1) = 2. Hence, h(k) = 2
k+1 - 2.

In addition, in Gen-Kill-of-Recursions, there are 0(n
)
operations to calculate Gen

and Kill sets. Each operation needs to manipulate a program up to a length /s;

where K = and /,• is the program size of /?,. Therefore the total complexity of

procedure Gen-Kill-of-Recursions is less than 0((££=1 (2*
+1 -2) + n)/E )

= 0(

2

n+2
K).
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Discussion. Since Ri will be processed almost twice as often as it is desirable

to rearrange R\, R2 ,
• •

,
Rn such that /1 < I2 < • • • < /n before applying Gen-Kill-of-

Recursions. If we are only interested in calculating Gen and Kill sets, we can use

prederived Gen(rj
)
and Kill(rj) for all j > k, to calculate Gen(rk

)
and Kill(rk),

instead of substituting the pattern of rj into r^. By doing this, each procedure

is completely bounded by its own body. I.e. the interface to other procedures is

performed by going through Gen and Kill sets only. Eventually, we can reduce the

complexity to 0(Ef=1
2"-,+1

/,) < 0((/E /n)

2

n+2 ).D

Algorithm i (In Set of Recursions)

Input:

(1) A set of procedures R\, R2 , . . ., Rn forming a

mutually recursive relationship or a self-recursive procedure if n = 1.

(2) Gen(Ri), Kill(Ri) and an initial In set In(Ri) for all 1 < i < n.

Output: In(Ri) for all 1 < i < n.

procedure /n-Set-of-Recursions is

begin

loop

for i in l..n loop

Use syntax-directed method to propagate In(Ri)
If Rj is invoked in R, then

Let Ini(Rj) be the In set of Rj in Rl: and

In(Rj) := Ini(Rj) U In(Rj).

end loop
;

exit when no change in In(Ri) for all 1 < i < n;

end loop
;

end /n-Set-of-Recursions;

Proof. Since 7n(R,) is not decreasing through the iteration process and there is a

finite upper bound for each of them, the algorithm will terminate eventually with the

expected result.

Analysis. Each iteration will propagate information down one call level. To have an

In set to be propagated to every procedure forming mutually recursive procedures,

we need at most n iterations. From Theorem 1, a call to itself does not generate

any new Gen set. Therefore, the worst case is n • /E ,
where /E = E-Lj/, and U is the
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program size of R{. Again in real applications n is usually bounded by a very small

constant. This algorithm has a linear complexity in terms of program size.

Example 3 (Mutually Recursive Procedures with Aliasing

)

The program in Figure

7.3 contains two mutually recursive procedures R\ and R2 . The production rules

for the program are R — SuSisRiSnSia, Ri —* S2S3(e\RiR2S6 ), and R2 —

*

e\S9S\oR2R\S\ 2 where R represents the body of the main procedure. Applying Al-

gorithm 3 to the mutually recursive procedures R\ and R2 ,
we have the following

derivation table:

1 2 3

Cl /i(-L,r2 ) /i(-L.-L) /1 ( -L .
c2 )

T\ /i(ci,r2 ) /i(ci,-L) /l(ci,C2 )

C2 Afn.-L)
r2 A hi 1 c2 )

From this table we can easily generate the following table:

1 2 3

Cl S2S3 s2 s3 S2S3

ri S2 S3 (£|ci r2S6 )
S2S3 S2 S3 (£|cic2 S6 )

02 £

?2 e|S95ioc2 riSi 2

Before generating the Gen and Kill sets, an algorithm like the one presented in

[8] should be used to determine the aliases in the program. It is easy to show that the

variables x, xl, and x2 are aliases. Hence, any definition to any one of these variable

must be considered as a definition of the three of them. To simplify the discussion

we use x to denote x, xl, and x2 and it should be obvious from the location of the

definition which specific variable name x refers to. The variable name s is also used

to denote the three aliases s, si, and s2 in the program. From the value of r2 in the

table above, Gen(R2 )
and Kill(R2 )

can then be expressed as follows:

Gen(R2 )
= Gen(£|59 5'ioc2 r-1 5i2) = {( 5 , 2), (s, 6), (x, 12)}

Kill(R2) = A’«7/(e|595'i0c2r1 5i 2 ) = {}
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with Text_I0;

procedure R is

s,x: integer;

package Int_I0 is new Text_I0. Integer_IO (Integer) ;

procedure R2 (s2, x2:in out integer);

procedure R1 (si, xl:in out integer) is

begin

si := si + xl; xl := xl - 1;

if xl>0 then

R1 (si, xl); R2 (si, xl)

;

— 2,3

si := si + 1;

end if;

end R1

;

procedure R2 (s2, x2:in out integer) is

begin

if x2 /= 0 then

— 6

x2 := x2 - 1; s2 := s2 + x2;

R2 (s2, x2) ; R1 (s2, x2)

;

0H(Ji
11

x2 := x2 + 1;

end if;

end R2;

— 12

begin

Int_IO.Get(x)
; s:=0; Rl(s,x); — 14,15,16

Int_ID.Put(x)
; Int.IO . Put (s)

;

end R3;

— 17,18

Figure 7.3. Mutually recursive procedures with aliasing.
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where c2 = e, rx = 5
,

253(e|cic2 5'6) and c\ = S2S3 . To determine Gen(Ri) and

Kill(Ri), use the following value of rx generated by Algorithm 3: = 5253(6:10! r2 Se)]

where Ci = S2S3. With the prederived Gen(R2 )
and Kill(R2 ), we have

Gen(Rx ) = {( 5 , 2), (x, 3), (s, 6), (x, 12)}

Kill(Ri) = {(s, *)|* ^ 2, 6} U {(x, i)\i ^ 3, 12}

The set of definitions reaching the entry point of each procedure can be determined

as follows:

= Gen(5i 4 5i5) U Gcn(
K
S2 S3

S

)
U Gen^SgSioR^

= {fo 2), (s, 6), (
5 , 10), (s, 15), (x, 3), (x, 9), (x, 12), (x, 14)}

In(R2 )
= C?en(5253i?i)UG'en(5951o)

= {(5, 2), (s, 6), (a, 10), (x, 3), (x, 9), (x, 12)}

From these two sets, are as follows in terms of the original variable names:

In(R1 )
= {(si, 2), (si, 6), (s2, 10), (s, 15), (*1, 3), (x2, 9), (x2, 12), (*, 14)}

In(R2 )
= {(sl,2),(sl,6),(s2,10),(xl,3),(x2,9),(x2,12)}

The In and Out of each statement in the program can easily be found using

Theorem 4 and the formulae given in Section 7.2. Once the In set of reaching

definitions has been determined for each statement in the program, building the

definition-use chains is a straightforward operation and is described by Algorithm 1.

7.3.7 Discussions

In this section we have provided a mathematical support for the interprocedural

definition-use dependency analysis for recursive procedures. We were able to reduce
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an infinite number of execution paths for recursive procedures to only a finite number

of execution paths and make the generation of the precise data flow information for

recursive procedures feasible.

For a real programming language, such as Ada, C, COBOL, or Pascal, there are

several situations that must be handled. The first is the function call. Each function

call can be considered as a procedure call along with the generation of a value.

Therefore the analysis of recursive functions is similar to what we have done for

the analysis of recursive procedures. The execution order can also be decided from

the program context. For example, if a function is used in an expression, then the

function should be handled first before the expression can be analyzed.

The second situation is the passing mechanism of formal parameters. Only call-

by-value, call-by-value-result, and call-by-reference are discussed here. Call-by-value

passing mechanism can be considered as a virtual assignment to copy the value of

an actual parameter to a virtual memory before we process the interprocedural data

flow analysis. Nothing will be returned at the return point from the procedure for

call-by-value formal parameters. Call-by-value-result passing mechanism is similar

to the call-by-value except the value at the virtual memory will be copied back to

the formal parameter at the return point. Call-by-reference passing mechanism deals

with the virtual memory exactly the same as the actual parameter. By combining

the techniques on handling aliases, we are able to generate the right aliasing classes

which can be used to generate precise definition-use dependency analysis.

7.4 Related Work

Although interprocedural data flow analysis algorithms do exist [3, 6, 9, 10, 15,

38, 46], they do not provide detailed information
(
i.e the locations of definitions

and uses that reach across procedure boundaries) needed for interprocedural data
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flow testing. Existing interprocedural data flow analysis algorithms can be classified

into three categories: in-line substitution, flow-insensitive analysis, and flow sensitive

analysis.

In in-line substitution
,
a call statement is substituted by the body of the called

procedure [3]. In addition to the obvious problem of memory requirements, in-line

substitution has other inherent problems. Both scoping of local variables in proce-

dures and binding of formal and actual parameters are difficult because the entire

module is viewed as a single procedure. Additionally, recursive procedures cannot be

represented.

A problem is flow-insensitive if information about control internal to subroutines

is not needed to compute the final data flow solution. The program representation

widely used to solve such problems is the call-graph in which each node represents a

procedure and each edge represents a procedure call site [3, 6, 10, 15, 38, 46]. The

call graph is not sufficient for computing the definition-use information across proce-

dure boundaries because it has no information about the control flow in individual

procedures. These algorithms are used in applications such as determining the set of

variables that may be defined, used or modified by a procedure call statement.

In flow-sensitive data flow analysis, the control flow information of the called

procedure is accounted for [9]. Flow-sensitive data flow analysis produces information

such as the set of variables that must be defined, used or modified by the called

procedure. These variables have to be defined, used or modified along all paths (as

opposed to along some paths in the case of flow-insensitive analysis) in the called

procedure. Callahan [9] uses a program summary graph to represent a program. The

program summary graph summarizes some of the required information at call sites

but this information does not indicate the locations of definitions and uses that reach

across procedure boundaries.
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There have been very few attempts in the past to solve the interprocedural reach-

ing definitions problem [24, 51]. In [51], the call-strings approach that can be used to

solve the interprocedural reaching definitions problem is presented. The call-strings

approach, however, cannot effectively handle programs with recursive procedures.

Harrold and Soffa [25] have developed a method to solve the reaching definition

problem using an extended program summary graph. Her method, however, requires

the transformation of the program into intermediate code and has a complexity2
of

0(n2

)
on bit-vector operations with size /; where l is the program length and n is the

size of the program summary graph [9, 25]. The proposed algorithm is faster than

Harrold’s approach in most cases because the proposed approach has linear complex-

ity in terms of program length with operations on bit-vectors of size equal to program

length for for all cases assuming the number of nodes of any strongly connected com-

ponent in the program call graph is bounded by a constant. The new algorithm also

has the advantage of being syntax-driven. The interaction between the user and the

environment can be in terms of the source code instead of an intermediate form of

representation. This greatly simplifies the user interface. However, Harrold’s algo-

rithm can be applied incrementally, while the proposed approach requires incremental

aliasing analysis which is still under investigation.

2The theoretical worst case of n is 0((/ + c^,)(vp * u
s )); where cm is the maximum number of

call sites in any procedure, v
g

is the total number of global variables, and vp is the average number
of actual parameters at call sites. However, n is expected to be 0(1 vg )

for real programs [9].
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CHAPTER 8

INTERPROCEDURAL DATA FLOW ANOMALY DETECTION

8.1 Introduction

A data flow anomaly is the phenomenon that happens between definitions, undef-

initions, and references of identifiers. There are three common data flow anomalies:

a defined-undefined anomaly occurs when a variable is defined but never used within

its scope; a defined-defined anomaly occurs when a variable is defined and defined

again before it is used; and an undefined-referenced anomaly occurs when a variable

is used before it has been defined.

Methods for the detection of data flow anomalies are usually limited to single

procedure or non-recursive interprocedural situation [19, 20, 28, 56]. Fairfield and

Hennel [18] proposed a method which claimed to to detect the data flow anomalies

of recursive procedures. However, his approach is based on the assumption that

all recursive calls will be substituted by all possible nonrecursive execution paths.

Calling context is ignored and the effect of the other paths containing recursive calls

is not accounted for in his approach. Fairfield and Hennel’s approach may sometimes

generate improper results as illustrated in the example in Figure 8.1. The regular

expression denoting the set of possible paths in the example can be stated as follows:

R = S2{S3 \S4S5RS7 \S8S9RSu)

Fairfield and Hennel’s approach will generate the following regular expression 1
:

R = S2S3\{S2S4S5 )

+S2S3S}\(S2S8S9 )

+S2S3S+
1S+ denotes S, SS

,
. .

.

,

etc.

84
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— a,b are globals

procedure R is

begin

case a is — S2

when 1 => Put(b); — S3

when -20.. 0 => b := a; — S4

a := b + 2; — S5

R; — S6

Put (b)

;

— S7

when 2. .20 => a := b; — S8

b := a - 3; — S9

R; — S10

Put (a)

;

end case;

end R;

— Sll

Figure 8.1. An example of data flow anomalies,

which is wrong because of the following two reasons:

1. Calling context is ignored since neither (S2S4S5yS2S3S3
7 nor

(
S2S8S9 )

iS2S3Si1

is a real execution path if i ^ j.

2. Execution paths which pass through both recursive calls, such as S2-S3-Sg-Si0 -

S2-S4-Ss-Se-S2 - S3-S7-Sn, are ignored.

Although the first case does not introduce improper results, the second case does

and is manifested by the defined-defined anomaly with respect to b from statement

Sg to statement S4 ,
which can not be detected by Fairfield and Hennel’s approach.

This chapter introduces an approach to detect data flow anomaly in the interpro-

cedural level, including self-recursive and mutually-recursive procedures. The chapter

is organized as follows: Section 8.1 introduces the problem. Section 8.2 summarizes
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relevant contributions by others and their restrictions. Section 8.3 introduces our

approach.

8.2 Background

The detection of data flow anomalies to improve program reliability is an impor-

tant technique, and its methods are still being refined. Fosdick and Osterweil [20]

first approached the problem. In their DAVE system [40], the problem of detecting

data flow anomalies is solved using depth first search. More recent solutions use

standard global data flow analysis algorithms and are being to concurrent programs

[54].

Both static and dynamic data flow analyses are useful tools for data flow anomalies

detection [11, 18, 19, 20, 26, 28, 56]. Static data flow analysis methods have problems

with array subscript evaluation which dynamic data flow analysis methods does not.

On the other hand, static analysis will reveal all data flow anomalies in a program,

while dynamic approach is capable of detecting only data flow anomalies along those

paths that are actually executed.

Existing static data flow anomaly analysis techniques analyze in three phases

[18, 19, 20, 28, 56]. The first phase detects the data flow anomalies. Two differ-

ent techniques are employed for data flow anomaly detection: path expressions and

standard data flow analysis techniques. In path expressions, actions on each variable

along the program execution paths are expressed in terms of regular expressions. The

regular expressions are then searched for patterns of data flow anomalies with respect

to each variable [18, 19]. Standard algorithms from compiler code optimization for

solving the live variable problem and the availability problem are also used to solve

the data flow anomaly detection problem [20, 54, 56]. This chapter extends the ap-

proach of Jachner and Agarwal [28] to handle programs with recursive subprograms.
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Let referenced, defined, undefined, and null be four types of data actions applied

on a variable. A variable is referenced (r) when its value is used, defined (d) when

a value is assigned to it, undefined
(
u

)
when it has no known value, and null (/) if

none of the other three actions take place. For instance, local variables are undefined

at the beginning and at the end of their scope; variable d is defined, and variables u

and v are used in the assignment statement d:=u-v. All variables except d, u and v

have a null action in this assignment. A path expression is a sequence of actions on

a variable along a path in a program written from left-to-right corresponding to the

order in which these actions occur along the path. The data flow anomalies can now

be expressed in terms of path expressions. For instance, a reference to an undefined

variable corresponds to a path expression of the form p\urp2 ,
where p\ and p2 stand

for arbitrary path expressions
[
28].

In our approach, a flow graph G(N, E, no) is used to represent the program under

consideration; where N is the set of nodes, E is the set of edges in the graph, and

no € A^ is a unique entry node. The edges in G correspond to control paths among

the nodes. Each node of G is either a simple statement, a logical expression, or a

call statement. Let the term, token
,
represent a simple variable, a group of aliased

variables, or an entire array. Moreover, let P(n-,a), P(-> n;a), and P(n —>;a)

denote path expressions of a token a at node n, on paths entering node n
,
and on

paths leaving node n, respectively. Furthermore, suppose that P(n;a), P(-> n;a),

and P(n -+;a) have been determined for all nodes n e N and for all tokens in the

program. Then, there is an anomaly on all paths through n if the following equation

holds:

P(~y n
'i
o)P(n\ a)P(n —

>; a) — p\xy

p

2 p$', where xy (E {itr, dd, du}
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It is seen from this equation that data flow anomalies can be detected by first

considering each individual node of the flow graph, followed by an evaluation of path

expressions at node n and on paths leaving and entering node n. A useful outcome

of this approach is that all tokens which have the same form of path expressions at

n, on paths leaving n, and on paths entering n will have the same anomalies, if any.

Thus it is convenient to group such tokens into a set, called a path set and process

all the token in the set collectively.

Jachner and Agarwal [28] showed that the path sets can be calculated using the

Avail, Live, and Reach algorithms as follows: (1) Define three mutually exclusive sets

gen(n), kill(n), and null(n) of tokens at node n. Kill(n) undoes whatever action

gen{n
)
represents. No action at all is represented by null{n). (2) Avail, Reach,

and Live can then be viewed as algorithms for determining sets of tokens whose path

expression on paths leaving node n is gp+ pi, and on paths entering node n is pg + p\,

irrespective of how g, k

,

and l are defined, as long as the following properties hold:

gen(n
)

fl kill(n
) = gen[n

)
fl null(n) = kill(n) D null{n) = 0

gl = Ig = g; kl — Ik = k; l + l = ll = l.

(3) A judicious definition of g, k, l in terms of the data actions r, d, u, and / allows

the use of Avail, Live, and Reach algorithms to determine the required path sets.

8.3 Approach

In this section, a general methodology for data flow anomaly detection in the

presence of recursive procedures is presented. The essence here is to devise algorithms

for Reach, Avail and Live analysis capable of handling recursive procedures.

A two step approach is used to carry out the Reach, Avail and Live-variable

problems. In the first step the Gen and Kill sets are determined using the approach

presented in Chapter 7. In the second step, after the Gen and Kill sets have been
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determined for each node on the control flow graph of each procedure, Algorithm

5 solves the Available definitions problem, Algorithm 7 solves the Reach definitions

problem, and Algorithm 6 solves the live-variable problem [5].

Algorithm 5 (Avail)

Input: A control flow graph with e-gen and e-kill determined for each node;
where Gen{n

)
is the set of expressions generated at node n and

Kill(n) is the set of expressions killed at node n. The initial node n0 .

Output: The set Avail for each node in the graph.
procedure Avail is

begin

Avail(n0) = 0;

for each node j ^ n0 in the control flow graph loop

Avail(j) := ft;

end loop
;

- where Omega is the set of all expressions in the control flow graph.
for each node j ^ n0 in the control flow graph loop

Avail(j) .— D* is a predecessor of j(Avail(k) — Kill(k) U Gen(k))-,

exit when no changes to Avail's occur;
end loop

;

end Avail;

Algorithm 6 (Live-variable

)

Input: A control flow graph with Gen and Kill determined for each node,
where Killtk

)
is set of variables definitely assigned values in k prior to

any use oi that variable in k
,
and Gen(k) is the set of variables whose

values

may be used in k prior to nay definition of that variable.
Output: The set Live for each node in the graph.
procedure Live is

begin

for each node j in the control flow graph loop
Live(j) := 0;

end loop-,

for each node j in the control flow graph loop
Live(j) .— IJ^

jg a successor 0f j(Live(k)
— Kill(k) U Gen(k))-,

exit when no changes to Live's occur;
end loop-,

end Live;
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Algorithm 7 (Reach)

Input: A control flow graph with Gen and Kill determined for each node.
Output: The set Reach for each node in the graph.

procedure Reach is

begin

for each node j in the control flow graph loop Reach(j) := 0;

end loop
;

loop

for each node j in the control flow graph loop

Reach(j) := U*
j s a predecessor of j(^eacM*0 ~ Kill(k) U Gen(k));

exit when no changes to Reach's occur;

end loop
;

end Reach;

For the purpose of solving the Avail, Live, and Reach problems, we assume that

the aliases of each variable in the program are already determined using an algorithm

such as the one mentioned in [8]. Each definition of a variable is considered a definition

for all of its aliases. Each use of a variable is treated as a use of all of its aliases as

well.

8.4 Related Work

Early work in the data flow anomaly analysis area, particularly that of Fosdick

and Osterweil, resulted in the Dave software verification tool [40]. This tool is batch

oriented and requires that the entire source code to be processed each time any of it

changes. The basic scheme of Dave is to use data flow analysis techniques to process

the entire program to attempt to detect paths of execution that may result in the

program producing anomalous results. If a data flow anomaly is found, the path of

the anomaly is reconstructed and printed out.

Shortly afterwards, Huang showed that the presence of data flow anomalies could

be detected through program instrumentation and dynamic execution [26].

Moreover, Masinter at Xerox has added several types of program checking to the

LISP based Scope Programming Environment [36]. In this environment, several types

of errors, including type errors, can be detected. The intent of Scope is much different
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from that of Dave. The analysis in Scope is totally query driven. No information is

available to the user unless the user specifically asks for it. The strategy of lazy evalu-

ation was used to defer any overhead until the user actually requests the information.

The undesirable side effect of a lazy evaluation based system is that no checking is

automatically done. The programmer must guess what harmful side effects he may

have introduced by making a change. He must then ask Scope to check a particular

condition. No secondary effects are found automatically. On the hand, the user does

have the ability to query an interactive facility of the same power as the Dave system.

8.5 The Limits of Data Flow Anomaly Analysis

Data flow anomaly analysis cannot determine that a program is correct, it can only

indicate that the program may be incorrect. This distinction is significant. Data flow

anomaly analysis is capable of determining that if the code is executed under a given

set of conditions, the code will produce erroneous results. Data flow anomaly analysis

cannot discover, in general, that the program will ever execute in that manner, nor

can it prove that if it executes in another manner it will produce correct results. A

similar problem occurs while detecting syntax errors in a normal compiler; a program

that is syntactically correct will not necessarily run correctly, but one with syntax

errors will definitely run incorrectly. The main purpose of providing the output of a

data flow anomaly analysis to the user is not to prove that the program is correct,

but to find as many mistakes in the program at the earliest possible point in the

development cycle.
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CHAPTER 9

CONCLUSIONS AND FURTHER STUDY

This dissertation has described a strategy based on incremental data flow analysis

for maintaining the consistency of a suite of test cases and related data flow infor-

mation with the state of a software system being developed or maintained. Based on

this approach, the impact of change on the system can be measured by the number

of altered definition-use paths. The number of such paths might be used in choosing

between different implementations of a change, or in allocating resources for testing.

Knowledge of the location of altered paths can aid in designing new test cases and

in locating faults once errors are discovered.

Data flow testing criteria are based on the tracking of variable values through a

program. These values are identified by the variable’s name and definition locations.

When a variable name denotes multiple values, however, they can be difficult to

track. This problem comes about, for example, with the use of arrays and pointers.

Extending data flow based testing to languages which allow arrays poses interesting

problems. Ideally, one would like to treat each array element as a separate variable.

However, it is not in general possible to statically determine the particular element

to which the array occurrence, A[i], refers. The simplest solution is to treat the entire

array as a single element. Each definition or use of an array element is treated as a

definition or use of the entire array. While this method is easy to implement, it fails to

take into account any information about particular array elements. This can lead to

test cases being considered adequate even though intuitively they fail to exercise the

92
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program thoroughly. Further study is clearly needed to identify acceptable strategies

for dealing with this problem.

The failure to properly manage and make effective use of previously developed

test cases is a major impediment to ensuring the quality of modified programs. We

are optimistic that a tool based on the strategies described in this dissertation can ef-

ficiently maintain a useful set of test cases and provide the means for rapidly assessing

the impact of program modifications.

In addition, we have derived a new algorithm to generate precise interprocedural

definition-use dependency information. The proposed algorithm has linear complex-

ity for most cases and is practical in most software applications. Handling aliasing

incrementally is still a problem that has to be addressed in order for the algorithms

developed in this dissertation to support inter-procedural definition-use dependency

analysis incrementally.

An efficient approach to detect data flow anomalies at the interprocedural level

has been presented. Unlike existing approaches, our approach can handle self and

mutually recursive procedures. The proposed method has linear complexity in terms

of program length with operations on bit-vectors of size equal to program length

for most cases and is practical in most software applications. This approach uses

static analysis and hence inherits its limitations. The major problem seems to be the

approach’s inadequate handling of array and pointer variables. Further research on

these problems can be of significant importance.

Furthermore, an interactive programming environment which includes tools for

regression testing and fault localization has been prototyped. The tools in the en-

vironment are specified in terms of attribute grammars, and the Cornell Synthesizer

Generator [43] has been used to generate them. Expanding this approach to handle

programs with more than one procedure was the motivation behind the development
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of the definition-use dependency analysis algorithm in Chapter 7. The evaluation of

these tools is still in an early stage, and more work is needed to assess their usefulness

in real applications.
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